首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lessons Learned from 25 Years of Research at the MADE Site   总被引:2,自引:0,他引:2  
Field studies at well‐instrumented research sites have provided extensive data sets and important insights essential for development and testing of transport theories and mathematical models. This paper provides an overview of over 25 years of research and lessons learned at one of such field research sites on the Columbus Air Force Base in Mississippi, commonly known as the Macrodispersion Experiment (MADE) site. Since the mid‐1980s, field data from the MADE site have been used extensively by researchers around the world to explore complex contaminant transport phenomena in highly heterogeneous porous media. Results from field investigations and modeling analyses suggested that connected networks of small‐scale preferential flow paths and relative flow barriers exert dominant control on solute transport processes. The classical advection‐dispersion model was shown to inadequately represent plume‐scale transport, while the dual‐domain mass transfer model was found to reproduce the primary observed plume characteristics. The MADE site has served as a valuable natural observatory for contaminant transport studies where new observations have led to better understanding and improved models have sprung out analysis of new data.  相似文献   

2.
At complex sites there may be many potential sources of contaminants within the vadose zone. Screening‐level analyses are useful to identify which potential source areas should be the focus of detailed investigation and analysis. A source screening module (SSM) has been developed to support preliminary evaluation of the threat posed by vadose zone waste sites on groundwater quality. This tool implements analytical solutions to simulate contaminant transport through the unsaturated and saturated zones to predict time‐varying concentrations at potential groundwater receptors. The SSM integrates several transport processes in a single simulation that is implemented within a user‐friendly, Microsoft Excel? ‐ based interface.  相似文献   

3.
An important quantity in groundwater protection is the residence time of water in an aquifer. It relates to both the travel time of a pollutant to arrive at a well and the time span required for self-purification of a polluted aquifer after removal of pollutant inputs. Time scales for aquifers can be gained from artificial tracer experiments or from environmental tracer data, the latter offering the only realistic alternative if time scales of years or decades have to be taken into account.

Different tracers show different time scales due to their different transport mechanisms especially in the unsaturated zone. While solute tracers are moved advectively with the seepage water, gas tracers pass the unsaturated zone diffusively through the air phase. Depending on the properties of the unsaturated zone (hydraulic properties, thickness) this difference in behavior can be used to separate the subsurface transport process into the unsaturated and the saturated parts.

In a field study in Germany, SF6 and 3H were used as environmental tracers. Both have a relatively well-known input function. Interpretation of data from observation wells by a box model approach led to spatially and temporally varying residence times. This was an indication that the influence of the unsaturated zone could not be neglected. While the gas tracer SF6 shows only residence times in the saturated zone, the tracer 3H reflects the whole travel time of water including both the unsaturated and saturated zones. Using a one-dimensional plug-flow model for the unsaturated zone combined with a detailed two-dimensional flow and transport model for the saturated zone leads to a holistic and consistent interpretation of the measured tracer concentrations. The observed pattern of old water under thick loess cover and younger water under areas where the fractured basalt aquifer crops out is reproduced after adjusting only two parameters: the effective porosity of the saturated aquifer and the product of field capacity and thickness of the unsaturated zone. While the effective porosity of the saturated zone is adjusted by means of the SF6 data, the field capacity of the loess layer is adjusted by means of the 3H observations. The thickness of the unsaturated zone is deduced from geological and pedological maps. All flow data are obtained from a calibrated flow model, which is based on geological data, observed heads and pumping tests only.

The transport model for the saturated zone was calibrated by fitting the porosity by means of gaseous tracer concentrations (SF6). The combined saturated–unsaturated zone model was then calibrated by fitting the field capacity of the unsaturated zone by means of 3H concentrations. With this model it was possible to verify the observed NO3 concentrations at the drinking water wells and to develop predictions for their future development under various scenarios of fertilizer input reduction in specific areas.  相似文献   


4.
In this study, a generalized contaminant retardation factor applicable to a multiphase system where various types of colloids exist simultaneously with contaminants is derived and incorporated into an equilibrium model which is successfully applied to experimental data for which phenanthrene was used as hydrophobic organic contaminants and dissolved organic matter (DOM) or bacteria as mobile carriers. Based on the parameter values for the experimental data regarding the association of phenanthrene with solid matrix, DOM and various bacterial isolates, numerical experiments are performed to examine the transport behaviour of hydrophobic organic contaminants in various types of the multiphase system. Numerical experiments demonstrate that the extent of contaminant transport enhancement depends on the adsorption affinity of the colloid, its concentration and its mobility, and that the importance of a third phase to contaminant transport needs to be evaluated carefully with respect to the relevance of experimental conditions applied to realistic environmental conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Changes in the water table level result in variable water saturation and variable hydrological fluxes at the interface between the unsaturated and saturated zone. This may influence the transport and fate of contaminants in the subsurface. The objective of this study was to examine the impact of a decreasing and an increasing water table on solute transport. We conducted tracer experiments at downward flow conditions in laboratory columns filled with two different uniform porous media under static and transient flow conditions either increasing or decreasing the water table. Tracer breakthrough curves were simulated using a mobile–immobile transport model. The resulting transport parameters were compared to identify dominant transport processes. Changes in the water table level affected dispersivities and mobile water fractions depending on the direction of water table movement and the grain size of the porous media. In fine glass beads, the water flow velocity was similar to the decline rate of the water table, and the mobile water fraction was decreased compared with steady‐state saturated conditions. However, immobile water was negligible. In coarse glass beads, water flow was faster because of fingered flow in the unsaturated part, and the mobile water fraction was smaller than in the fine material. Here, a rising water table led to an even smaller mobile water fraction and increased solute spreading because of diffusive interaction with immobile water. We conclude that changes of the water table need to be considered to correctly simulate transport in the subsurface at the transition of the unsaturated–saturated zone. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Effective long‐term operation of soil vapor extraction (SVE) systems for cleanup of vadose‐zone sources requires consideration of the likelihood that remediation activities over time will alter the subsurface distribution and configuration of contaminants. A method is demonstrated for locating and characterizing the distribution and nature of persistent volatile organic contaminant (VOC) sources in the vadose zone. The method consists of three components: analysis of existing site and SVE‐operations data, vapor‐phase cyclic contaminant mass‐discharge testing, and short‐term vapor‐phase contaminant mass‐discharge tests conducted in series at multiple locations. Results obtained from the method were used to characterize overall source zone mass‐transfer limitations, source‐strength reductions, potential changes in source‐zone architecture, and the spatial variability and extent of the persistent source(s) for the Department of Energy's Hanford site. The results confirmed a heterogeneous distribution of contaminant mass discharge throughout the vadose zone. Analyses of the mass‐discharge profiles indicate that the remaining contaminant source is coincident with a lower‐permeability unit at the site. Such measurements of source strength and size as obtained herein are needed to determine the impacts of vadose‐zone sources on groundwater contamination and vapor intrusion, and can support evaluation and optimization of the performance of SVE operations.  相似文献   

7.
Innovative remediation studies were conducted between 1994 and 2004 at sites contaminated by nonaqueous phase liquids (NAPLs) at Hill and Dover AFB, and included technologies that mobilize, solubilize, and volatilize NAPL: air sparging (AS), surfactant flushing, cosolvent flooding, and flushing with a complexing-sugar solution. The experiments proved that aggressive remedial efforts tailored to the contaminant can remove more than 90% of the NAPL-phase contaminant mass. Site-characterization methods were tested as part of these field efforts, including partitioning tracer tests, biotracer tests, and mass-flux measurements. A significant reduction in the groundwater contaminant mass flux was achieved despite incomplete removal of the source. The effectiveness of soil, groundwater, and tracer based characterization methods may be site and technology specific. Employing multiple methods can improve characterization. The studies elucidated the importance of small-scale heterogeneities on remediation effectiveness, and fomented research on enhanced-delivery methods. Most contaminant removal occurs in hydraulically accessible zones, and complete removal is limited by contaminant mass stored in inaccessible zones. These studies illustrated the importance of understanding the fluid dynamics and interfacial behavior of injected fluids on remediation design and implementation. The importance of understanding the dynamics of NAPL-mixture dissolution and removal was highlighted. The results from these studies helped researchers better understand what processes and scales are most important to include in mathematical models used for design and data analysis. Finally, the work at these sites emphasized the importance and feasibility of recycling and reusing chemical agents, and enabled the implementation and success of follow-on full-scale efforts.  相似文献   

8.
Miles B  Peter A  Teutsch G 《Ground water》2008,46(5):727-742
A two-dimensional multicomponent reactive transport modeling approach was used to simulate contaminant transport and the evolution of redox processes at a large-scale kerosene-contaminated site near Berlin, Germany. In contrast to previous site-scale modeling studies that focused either on one or two contaminants or on steady-state redox conditions, multiple contaminants and electron acceptors, including mineral phase Iron (III), were considered with an evolving redox zonation. Inhibition terms were used to switch between the different electron acceptor processes in the reaction scheme. The transient evolution of redox zones and contaminant plumes was simulated for two separate transects of the site, which have different geology and ground water recharge distributions and where quite different downstream contaminant and terminal electron–accepting process (TEAP) distributions are observed. The same reaction system, calibrated to measured concentrations along one of the transects, was used in both cases, achieving a reasonable match with observed concentrations. The differences between the two transects could thus to some extent be attributed to the different hydrological and hydrogeological conditions, in particular ground water recharge distributions. Long-term simulations showed that the distribution of TEAPs evolves as Fe(III) becomes depleted, with conditions becoming increasingly methanogenic, leading to changes in contaminant plume lengths. The models were applied to assess the potential effects of planned changes in land use at the site that may affect the ground water recharge distribution. The simulated redox zonation responded strongly to changes in recharge, which in turn led to changes in the contaminant plume lengths.  相似文献   

9.
Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the joint approach. Furthermore, the dual estimation is proven to be very effective computationally, recovering accurate estimates at a reasonable cost.  相似文献   

10.
Resource extraction and transportation activities in subarctic Canada can result in the unintentional release of contaminants into the surrounding peatlands. In the event of a release, a thorough understanding of solute transport within the saturated zone is necessary to predict plume fate and the potential impacts on peatland ecosystems. To better characterize contaminant transport in these systems, approximately 13,000 L/day of sodium chloride tracer (200 mg/L) was released into a bog in the James Bay Lowland. The tracer was pumped into a fully penetrating well (1.5 m) between July 5 and August 18, 2015. Horizontal and vertical plume development was measured via in situ specific conductance and water table depth from an adaptive monitoring network. Over the spill period, the bulk of the plume travelled a lateral distance of 100 m in the direction of the slight regional groundwater and topographical slope. The plume shape was irregular and followed the hollows, indicating preferential flow paths due to the site microtopography. Saturated transport of the tracer occurred primarily at ~25 cm below ground surface (bgs), and at a discontinuous high hydraulic conductivity layer ~125 cm bgs due to a complex and heterogeneous vertical hydraulic conductivity profile. Plume measurement was confounded by a large amount of precipitation (233 mm over the study period) that temporarily diluted the tracer in the highly conductive upper peat layer. Longitudinal solute advection can be approximated using local water table information (i.e., depth and gradient); microtopography; and meteorological conditions. Vertical distribution of solute within the peat profile is far more complex due to the heterogeneous subsurface; characterization would be aided by a detailed understanding of the site‐specific peat profile; the degree of decomposition; and the type of contaminant (e.g., reactive/nonreactive). The results of this research highlight the difficulty of tracking a contaminant spill in bogs and provide a benchmark for the characterization of the short‐term fate of a plume in these complex systems.  相似文献   

11.
This paper introduces a new method for simulating large-scale subsurface contaminant transport that combines an Analytic Element Method (AEM) groundwater flow solution with a split-operator Streamline Method for modeling reactive transport. The key feature of the method is the manner in which the vertically integrated AEM flow solution is used to construct three-dimensional particle tracks that define the geometry of the Streamline Method. The inherently parallel nature of the algorithm supports the development of reactive transport models for spatial domains much larger than current grid-based methods. The applicability of the new approach is verified for cases with negligible transverse dispersion through comparisons to analytic solutions and existing numerical solutions, and parallel performance is demonstrated through a realistic test problem based on the regional-scale transport of agricultural contaminants from spatially distributed sources.  相似文献   

12.
The pattern of ground contamination across a site depends on the historical pattern of contaminant releases at the surface and the redistribution and the fate of contaminants below the surface. Using these concepts a new site assessment approach (assessment modelling) is proposed based on the development of three stochastic models: a model of the physical structure of the ground materials beneath the site; a model of the distribution of surface contaminant spills; and a model of the flow and transport of spilled material into the heterogeneous underlying ground to construct alternative, equally likely, present day contaminant distributions. Combining the models within a Monte Carlo framework can, in principle, improve the understanding of the potential for excess contamination across the site and improve decisions on remediation options and locations. A trial application has been undertaken in the UK using a particular site to assess the approach. The conditions at the site used for the trial and the first of the stochastic model developments, the geostatistical modelling of the soil heterogeneity, are presented in this paper. Non-parametric and parametric geostatistics have been employed to formulate the geostatistical models of the site soils using lithological information from 146 trial pits and boreholes. The approach to the soil modelling and the verification and validation of the results are described. The heterogeneity of the subsurface is complicated by the presence of made-ground, comprised of various inert building wastes, and the non-stationarity of the heterogeneity of the natural ground. This paper is the first of three describing the assessment modelling methodology and its trial application to the site.  相似文献   

13.
1 INTRODUCTION Alluvial streams generally have permeable bed sediments that can admit significant pore water flows. Steady flow of surface water over bed roughness features such as sand waves or pools and riffles can then drive water flow into and out of the shallow subsurface. This is often termed hyporheic exchange, and the subsurface region where mixing between stream and ground waters occurs is the hyporheic zone (Hynes, 1983). The hyporheic zone has been shown to be a critical com…  相似文献   

14.
Chlorinated solvents are one of the most commonly detected groundwater contaminants in industrial areas. Identification of polluters and allocation of contaminant sources are important concerns in the evaluation of complex subsurface contamination with multiple sources. In recent years, compound‐specific isotope analyses (CSIA) have been employed to discriminate among different contaminant sources and to better understand the fate of contaminants in field‐site studies. In this study, the usefulness of dual isotopes (carbon and chlorine) was shown in assessments of groundwater contamination at an industrial complex in Wonju, Korea, where groundwater contamination with chlorinated solvents such as trichloroethene (TCE) and carbon tetrachloride (CT) was observed. In November 2009, the detected TCE concentrations at the study site ranged between nondetected and 10,066 µg/L, and the CT concentrations ranged between nondetected and 985 µg/L. In the upgradient area, TCE and CT metabolites were detected, whereas only TCE metabolites were detected in the downgradient area. The study revealed the presence of separate small but concentrated TCE pockets in the downgradient area, suggesting the possibility of multiple contaminant sources that created multiple comingling plumes. Furthermore, the variation of the isotopic (δ13C and δ37Cl) TCE values between the upgradient and downgradient areas lends support to the idea of multiple contamination sources even in the presence of detectable biodegradation. This case study found it useful to apply a spatial distribution of contaminants coupled with their dual isotopic values for evaluation of the contaminated sites and identification of the presence of multiple sources in the study area.  相似文献   

15.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Cone penctrometer test (CPT) based Raman spectroscopy was used to identify separate phase tetrachloroethylene (PCE) and trichlorocthylene (TCE) contamination in the subsurface at two locations during field tests conducted at the U.S. Department of Energy's (DOE) Savannah River site. Clear characteristic Raman spectral peaks for PCE and TCE were observed at two sites and several depths during CPT deployment. Because of the uniqueness of a Raman spectrum for a given compound, these data are compelling evidence of the presence of the two compounds. The Raman spectral results correlated with high PCE and TCE concentrations in soil samples collected from the same subsurface zones, confirming that the method is a viable dense nonaqueous phase liquid (DNAPL) characterization technique. The Raman spectroscopic identification of PCE and TCE in these tests represents the first time that DNAPLs have been unequivocally located in the subsurface by an in situ technique.
The detection limit of the Raman spectroscopy is related to the probability of contaminant droplets appearing on the optical window in the path of the probe light. Based on data from this fieldwork the Raman technique may require a threshold quantity of DNAPL to provide an adequate optical cross section for spectroscopic response. The low aqueous solubility of PCE and TCE and relatively weak optical intensity of the Raman signal precludes the detection of aqueous phase contaminants by this method, making it selective for DNAPL contaminants only.  相似文献   

17.
A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.  相似文献   

18.
Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma   总被引:1,自引:0,他引:1  
Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.  相似文献   

19.
Multilevel piezometers are cost-effective monitoring devices for determining the three-dimensional distribution of solutes in ground water. Construction includes flexible tubing (plastic or Teflon®). Their sampling is subject to a number of'potential biases, particularly: (1) losses of volatile organic solutes via volatilization, (2) sorption onto the flexible tubing of the piezometers, (3) leaching of organics from this tubing, and (4) collection of unrepresentative samples due to inadequate piezometer flushing. It is shown that these biases are minimal or are easily controlled in most situations.
Another source of bias has been recognized. Organic solutes present in ground water above the screened level can penetrate the flexible plastic or Teflon tubing and contaminate the sampled water being drawn through this tubing. Laboratory tests and field results indicate this transmission causes low organic contaminant concentrations to be erroneously attributed to ground water which is free of such contaminants. The transmitted organics apparently desorb from the plastic tubing during flushing of even 40 piezometer volumes.
Recognition of this transmission problem provides for a better interpretation of existing organic contaminant distribution data. Caution is advised when considering the use of these monitoring devices in organic solute contaminant studies.  相似文献   

20.
Study of the mobility of contaminants in an aquifer is an important issue for the proper remediation of contaminated groundwater. Determination of associated solute transport parameters therefore is essential for investigation of the extent to which groundwater can be contaminated. This study aimed at determining solute transport parameters for an unconfined sandy aquifer at a laboratory scale through various tracer tests using a conservative solute as a tracer. Tracer tests consisted of both well‐tracer tests (single and double wells) and an aquifer tracer test using a plume‐capturing device such as time domain reflectometry (TDR). The results showed that longitudinal dispersivities estimated from the single and double well‐tracer tests were 2·2 cm and 13·5 cm for a travel distance of 9·3 cm and 13·5 cm from the injection point respectively. These results agreed reasonably well with the results of the aquifer tracer test. The solute transport parameters obtained at multiple points in the aquifer through the aquifer tracer test revealed that the dispersivity length was proportional to the travel distance by a factor of 0·3, which was moderately higher than the value of 0·1 given in the literature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号