首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary. In cases where directional data, such as palaeomagnetic directions, lie nearly along a great circle, a good approximation to the maximum likelihood estimate of the intermediate concentration parameter k 2 in the Bingham probability distribution is given by: 2( t 2/ N ) – 1 = I 1(1/2 k 2)/ I 0(1/2 k 2), where t 2 is the intermediate eigenvalue, N is the number of samples, and the Ii are the appropriate modified Bessel functions of the first kind. This estimate, the asymptotic limit as the smallest eigenvalue t 1→ 0, corresponds to restricting all points to lie on a great circle. The limit is also useful as an endpoint for interpolation, especially since numerical calculation in this region is difficult.  相似文献   

2.
Summary. Asymptotic expressions for components of the electromagnetic field of a grounded electric dipole are considered for the model consisting of a thin surface-layer overlapping a stratified medium with a highly resistive screen on the roof. It is shown that the method of spatial derivatives makes it possible to obtain proper estimates of the impedance at distances of r ≥|λ0| from the nearest edge of the surface anomaly (|λ0| being the effective depth of the field penetration in the underlying section). the magnetotelluric methods allow one to obtain the true values of impedance, provided r ≥ max {|λ0|, |/( S −1+ Z 0|1/2} where S is the integrated conductivity of the surface layer, is the transverse resistance of the screen, and Z 0 is the Tikhonov—Cagniard impedance for the medium underlying the surface layer.  相似文献   

3.
Magnetic fabric was determined by applying the anisotropy from the low-field magnetic susceptibility (AMS) technique in 62 mafic dykes from the Mesozoic Florianópolis (Santa Catarina Island) dyke swarm, southern Brazil. These dykes cut the crystalline basement rocks, which are mainly Proterozoic. They are vertical or subvertical in dip and trend mainly NE, although NW-trending dykes are also found. Dykes are tholeiitic in composition and are geochemically similar to those from the Ponta Grossa swarm. Thicknesses vary from 0.3 to 60 m. Polished sections show that titanomagnetites carry the AMS in these dykes. Hysteresis parameters show that the magnetic minerals fall in the PSD range. Two types of magnetic fabric are recognized. Type I is characterized by K 1- K 2 parallel to the dyke wall, representing magma flow within the dykes; type II, with K 1- K 3 parallel to the dyke wall, was found in four dykes. Type I is found in 94 per cent of the dykes, and approximately 20 per cent of these have K 1 inclinations of less than 30°, suggesting horizontal or subhorizontal flow. About 80 per cent have K 1 inclinations of greater than 30°, due to inclined to vertical flow. The comparison of AMS studies from both the Florianópolis and the Ponta Grossa dykes suggests a source position closer to Santa Catarina Island than the Ponta Grossa arch.  相似文献   

4.
Summary. Using nine IDA records for the Indonesian earthquake of 1977 August 19, we have formed an optimal linear combination of the records and have measured the frequency and Q of 0 S 0 and 1 S 0. The frequency was measured using the moment ratio method. The attenuation was measured by the minimum width method and by the time-lapse method. The frequency and attenuation were measured simultaneously by varying them to obtain a best fit to the data. A 2000-hr stack, the sum of nine individual records, for 0 S 0 gave a frequency of 0.814664 mHz±4 ppm. The values for the Q of 0 S 0 for the three different methods of measurement were 5600,5833 and 5700, respectively. The error in the estimates of Q -1 is about 5 per cent for the minimum power method. For 1 S 0 a 300-hr stack yielded a frequency of 1.63151 mHz±30 ppm. The values of Q for this mode were 1960, 1800 and 1850, respectively, with an error in Q -1 of about 12 per cent for the minimum power method.  相似文献   

5.
Summary. Attenuation of earthquake intensities with epicentral distance was studied by analysing the intensity data for 39 earthquakes in the United States. Attenuation of MM intensity ( I ) with distance (Δ km) follows a simple relation of the type log I = log I 0 - m Δ, where I 0 is the intensity at the epicentre and m is a constant. Slope m is found to be inversely proportional to the square of the focal depth. Intensity attenuation pattern in the United States in general can be represented by a unified relation I/I 0= exp [-(0.8999/ h 2+ 0.0014)Δ] where 16km ≤ h ≤ 60km. Intensities were calculated with the help of this equation and a good agreement with the observed intensities were found. A comparative study has also been made between the attenuation relations applicable to India and the United States.  相似文献   

6.
Summary. The response of many dynamical systems to an impulse is a linear combination of decaying cosines. The frequencies of the cosines have generally been estimated in geophysics by periodogram analysis and little formal indication of uncertainty has been provided. This work presents an estimation procedure by the methods of complex demodulation and nonlinear regression that specifically incorporates in the basic model the decaying aspect of the cosines (periodogram analysis does not). The use of plots of the instantaneous phase as a function of time is shown to greatly enhance resolution. Expressions for the variances of eigenfrequencies, amplitudes, phases and damping constants Q are derived by non-linear least-squares. The results are illustrated, for the problem of the free oscillations of the Earth, by computations with the record made at Trieste of the Chilean earthquake of 1960 May 22. Sample values are periods and standard errors of 737.79 ± 0.13 s, 506.25 ± 0.13 s and 429.60 ± 0.14 s for 0 T 8, 0 T 13 and 0 T 16 with Q values and standard errors of 200 ± 14, 230 ± 28 and 215 ± 30, respectively.  相似文献   

7.
Summary. The geopotential is usually expressed as an infinite series of spherical harmonics, and the odd zonal harmonics are the terms independent of longitude and antisymmetric about the equator: they define the 'pear-shape' effect. The coefficients J 3, J 5, J 7, … of these harmonics have been evaluated by analysing the variations in eccentricity of 28 satellite orbits from near-equatorial to polar. Most of the orbits from our previous determination in 1974 are used again, but three new orbits are added, including two at inclinations between 62° and 63°, which have been specially observed for more than five years by the Hewitt cameras. With the help of the new orbits and revised theory, we have obtained sets of J -coefficients with standard deviations about 40 per cent lower than before. A 9-coefficient set is chosen as representative, and is as follows (all × 109): J 3=– 2530 ± 4, J 5=–245 ± 5, J 7=–336 ± 6, J 9=–90 ± 7, J 11= 159 ± 9, J 13=–158 ± 15, J 15=– 20 ± 15, J 17=– 236 ± 14, J 19=– 27 ± 19. With this set of values, the pear-shape asymmetry of the geoid (north polar minus south polar radius) amounts to 45.1 m instead of the previous 44.7 m. The accuracy of the longitude-averaged geoid profile is estimated as 50 cm, except at latitudes above 86°. The geoid profile and predicted amplitude of the oscillation in eccentricity are compared with those from other sources.  相似文献   

8.
The tidal dynamics of the Irish and Celtic Seas   总被引:1,自引:0,他引:1  
Summary. Current meter data collected over periods of more than 14 day from the Irish and Celtic Seas are harmonically analysed and presented in maps of tidal stream information. Making use of the analysed current data, and by constructing time series of frictional and inertial stresses which are also harmonically analysed, harmonic constituents of the surface tidal slopes at current meter stations are obtained. Using these with data collected from offshore tide gauges, and in conjunction with coastal tide data, cotidal maps are drawn with some confidence for M 2, S 2, O 1 and K 1, the M 2 chart resolving the discrepancy which exists between the different charts of the Celtic Sea already produced. Cotidal maps for M 3 and M 4 are also presented.
The mean over a tidal cycle of the energy flux for M 2, S 2 and O 1 is also presented in the form of the total energy flux in these constituents which crosses different sectional lines. A flux of 44 × 106 kW is observed to enter the Celtic Sea from the Atlantic and this is compared with previous estimates. An energy budget is also performed for M 2, including all the effects of astronomical forcing and Earth tides to enable comparison to be made between the true energy inflow and the estimated frictional dissipation. Finally, comparison is made between the mean of the instantaneous energy flux and the sum of the energy fluxes associated with the major harmonics.  相似文献   

9.
The traveltime perturbation equations for the quasi-compressional and the two quasi-shear waves propagating in a factorized anisotropic inhomogeneous (FAI) media are derived. The concept of FAI media simplifies considerably these equations. In the FAI medium, the density normalized elastic parameters a ijkl ( X i ) can be described by the relation a ijkl ( X i) = f 2( x i ) A ijkl, where A ijkl are constants, independent of coordinates x i and f 2( x i) is a continuous smooth function of x i . The types of anisotropy ( A ijkl ) and inhomogeneity [ f ( x i)] are not restricted. The traveltime perturbations of individual seismic body waves ( q P , qS 1 and qS 2) propagating in the FAI medium depend, of course, both on the structural pertubations [δ f 2( x i)] and on the anisotropy perturbations (δ A ijkl ), but both these effects are fully separated. The perturbation equations for the time delay between the two qS -waves propagating in the FAI medium are simplified even more. If the unperturbed (background) medium is isotropic, the perturbation of the time delay does not depend on the structural perturbations (δ f 2( x i) at all. This striking result, valid of course only in the framework of first-order perturbation theory, will simplify considerably the interpretation of the time delay between the two split qS -waves in inhomogeneous anisotropic media. Numerical examples are presented.  相似文献   

10.
Summary. Tidal gravity measurements have been made at six sites in Britain with two nulled LaCoste and Romberg Earth tide gravitymeters. The M 2 observations from these and two further sites are compared with calculations of the tidal loading from the seas around the British Isles and the major oceans. Models of the M 2 marine tides are convolved with Green's functions for appropriate radially stratified Earth models. The differences between the M 2 observations and the theoretical calculations are less than 0.6 μ gals and it is shown that these differences contain further information concerning the errors in the marine tide models. The M 2 marine tides on the north-west European continental shelf are reasonably well known and this allows a useful test of the feasibility of using tidal gravity measurements for the inverse ocean tide problem in areas where the ocean tides are less well known. The differential gravity loading signal between pairs of gravity stations is shown to be important for considerations of the uniqueness and accuracy of the inverse problem. M 2 tidal gravity loading maps for the British Isles and Europe have been produced which are of use in making corrections to various geodetic measurements.  相似文献   

11.
Summary. A new asymptotic formula is obtained for the spectrum of an isolated normal mode multiplet nSl or nTl , with n ≪ l , on a laterally heterogeneous Earth. The principal feature of this formula is that it is uniformly valid on the Earth's surface, including near the epicentre and its antipode. The formal conditions for its validity are that | δm / m 0|≪ 1 and s max≪ l ≪ s min| δm / m 0|–1, where | δm / m 0| is the relative magnitude of the lateral heterogeneity, and s min and s max are the minimum and maximum significant degrees in its spherical harmonic expansion. As well as providing a basis for the geographical interpretation of near-epicentral or near-antipodal long-period recordings, the new formula also unifies the asymptotic theory and adds insight into the phenomena which govern the details of multiplet spectra in general.  相似文献   

12.
b
A method based on the coda attenuation law: Q = Q 0( f/f 0)v leads to the determination of the lateral variation of coda- Q in the southern part of the Iberian Peninsula using seismograms belonging to the seismological network of the Cartuja Observatory, located in Granada. The lateral variation of Q 0 ( Q value corresponding to a reference frequency f 0 of 1 Hz) and its frequency dependence for the 1 to 5 Hz frequency range are, in general, in agreement with coda- Q values for frequencies less than about 1 Hz, previously determined in the region under study.
To determine the coda- Q values analytical functions have been used to fit the magnification curves of the vertical component short-period seismographs belonging to the Cartuja network. The problem is solved by using least-squares techniques and non-linear inversion. The determined coda- Q 0 values and its frequency dependence correlate well with several known geophysical parameters in the southern part of the Iberian Peninsula.  相似文献   

13.
In this article the interaction of plane waves with a weak-contrast interface between two weakly anisotropic half-spaces is investigated. The anisotropy dealt with is of a general type. The stress–displacement vectors of the plane waves are calculated by perturbation theory. By assuming that the jump in elastic parameters and density across the interface is small, one can derive a simple expression for the R qPqP coefficient. In cases in which the wave motion is restricted to a symmetry plane of an anisotropic medium, simple expressions for the R qSVqSV and R SHSH coefficients are also derived.  相似文献   

14.
We report on calculations of the on-shore run-up of waves that might be generated by the impact of subkilometre asteroids into the deep ocean. The calculations were done with the COULWAVE code, which models the propagation and shore-interaction of non-linear moderate- to long-wavelength waves  ( kh < π)  using the extended Boussinesq approximation. We carried out run-up calculations for several different situations: (1) laboratory-scale monochromatic wave trains onto simple slopes; (2) 10–100 m monochromatic wave trains onto simple slopes; (3) 10–100 m monochromatic wave trains onto a compound slope representing a typical bathymetric profile of the Pacific coast of North America; (4) time-variable scaled trains generated by the collapse of an impact cavity in deep water onto simple slopes and (5) full-amplitude trains onto the Pacific coast profile. For the last case, we also investigated the effects of bottom friction on the run-up. For all cases, we compare our results with the so-called 'Irribaren scaling': The relative run-up   R / H 0=ξ= s ( H 0/ L 0)−1/2  , where the run-up is   R , H 0  is the deep-water waveheight, L 0 is the deep-water wavelength, s is the slope and ξ is a dimensionless quantity known as the Irribaren number. Our results suggest that Irribaren scaling breaks down for shallow slopes   s ≤ 0.01  when  ξ < 0.1 − 0.2  , below which   R / H 0  is approximately constant. This regime corresponds to steep waves and very shallow slopes, which are the most relevant for impact tsunami, but also the most difficult to access experimentally.  相似文献   

15.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

16.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

17.
This paper presents a method to invert underside-reflection ( P d P or S d S arrivals) data for lateral depth variations of upper-mantle discontinuities, combining traveltime and amplitude data. The method greatly improves the resolution of small-scale undulations obtained by existing imaging methods and does not suffer from the long-wavelength biases that are likely to be present in currently available models. Existing inversion methods account for the large size of the Fresnel zone of underside reflections, but not for its complexity, arising from the mini-max traveltime nature of PP- and SS -related waves. This neglect results in long-wavelength artefacts from small-scale undulations of the discontinuities, obscuring true long-wavelength depth variations. The inversion method presented in this paper uses a complex-valued sensitivity kernel, derived from the representation of underside reflections through a Kirchhoff integral formulation. The sensitivity kernel accounts for the varying sensitivity of the waveforms to discontinuity structure over the Fresnel zone. The method is applied to a large, synthetic data set. The data set consists of P d P amplitudes and traveltimes. The results show that the new inversion method resolves depth variations on a lateral scale that is smaller than the size of the Fresnel zone of individual underside reflections (but larger than the dominant wavelength), retaining the resolution of large-scale variations. The results presented here suggest that the discontinuity depth variations induced by slab penetration of the 670 discontinuity could be resolved by current broad-band P 670 P data sets.  相似文献   

18.
Summary. The results of previous work by the authors is used to remove most of the effects of ocean and atmospheric loading from an 18-month Earth gravity-tide record. The remaining signal is examined for additional influence of ocean and atmosphere and for evidence of the frequency-dependence of the response of the solid earth. Variations in time of the measured tides are shown to result from the atmospheric tide at S 2 and appear to result from variations in ocean tides at other frequencies. The frequency-dependence of the solid earth response near 1 cycle per siderial day is found to be consistent with the nearly diurnal free wobble. However, the influence of the ocean on the small but crucial Ψ1 tide is uncertain. Anomalous responses are observed at several other frequencies but except for the case of ρ1 it is argued that anomalous ocean tides are plausible and could therefore explain the observations.  相似文献   

19.
Summary. The inverse gravity potential problem consists in the determination of the form and the density of the body by its exterior gravity potential. We describe two similar classes of bodies for which this problem has a unique constructive solution.
(1) The first class contains the cylindrical bodies with finite length, arbitrary form of section and ρ( R , ø, z) =ρ1( z )ρ2( R , ø) density distribution, where z is the cylindrical coordinate; R , ø are the polar coordinates in a section plane. This class is important for prospecting geophysics in that it allows us to determine in a unique and constructive way, the function ρ1( R , ø), the length, form and orientation of the cylinder if we know the function ρ1( z ) and the exterior potential. The classical moment problem of functions is the basis for the solution of this problem.
(2) The analogous problem for the class of the spherical cylinders, or bodies bounded by arbitrary similar sections of two different concentric spheres and the radial lateral surface, appears when bodies of planetary size are studied. (An example of these bodies would be the Moon mascons.) The density distribution of these cylinders is ρ(τ, θ, ø) =ρ1(τ)ρ2(θ, ø) where τ, θ, ø are the spherical coordinates. The function ρ1(θ, ø), length and form of spherical sections can be uniquely determined by exterior potential if we know the function ρ1(τ). We propose a new constructive method for harmonic continuation of the gravity potential into the region containing the perturbing masses for the solution of the problem.  相似文献   

20.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号