首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
To quantify spatiotemporal variation in hydraulic properties of bank gully concentrated flow, a series of scour experiments were run under water discharge rates ranging from 30 to 120 l min?1. Concentrated flows were found to be turbulent and supercritical in the upstream catchment area and downstream gully beds. As discharge increased, values of the soil erosion rate, Reynolds number (Re), shear stress, stream power, and flow energy consumption (ΔE) increased while values of the Froude number (Fr) and the Darcy–Weisbach friction factor (resistance f ) did not. With the exception of gully headcut collapse under discharge rates of 60, 90, and 120 l min?1, a declining power function trend (P < 0.05) in the soil erosion rate developed in the upstream catchment area, headcuts, and downstream gully beds. However, increasing trends were observed in temporal variations of hydraulic properties for downstream gully beds and the upstream catchment area. Despite significant differences in temporal variation between the soil erosion rate and hydraulic property values, relative steady state conditions of the soil erosion rate and ΔE were attained following an initial period of adjustment in the upstream catchment area, headcuts, and downstream gully beds under different discharge rates. A logarithmic growth of flow energy consumption per unit soil loss (ΔEu) was observed in bank gullies and the upstream catchment area as the experiment progressed, further illustrating the actual reason behind the discrepancy in temporal variation between soil erosion rates and ΔE. Results demonstrate that ΔE can be used to estimate headcut erosion soil loss, but further quantitative studies are required to quantify coupling effects between hydraulic properties and vertical variation in soil mechanical properties on temporal variation for bank gully soil erosion rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Alluvial gullies are often formed in dispersible sodic soils along steep banks of incised river channels. Field data collected by Shellberg et al. (Earth Surface Processes and Landforms 38: 1765–1778, 2013) from a gully outlet in northern Australia showed little hysteresis between water discharge and fine (<63 µm) and coarse (>63 µm) suspended sediment, indicating transport‐limited rather than source‐limited conditions. The major source of the fine (silt/clay) component was the sodic soils of upstream gully scarps, and the coarser (sand) component was sourced locally from channel bed material. In this companion paper at the same study site, a new method was developed for combining the settling velocity characteristics of these two sediment source components to estimate the average settling velocity of the total suspended sediment. This was compared to the analysis of limited sediment samples collected during flood conditions. These settling velocity data were used in the steady‐state transport limit theory of Hairsine and Rose (Water Resources Research 28: 237–243, 245–250, 1992) that successfully predicted field data of concentrations and loads at a cross‐section, regardless of the complexity of transport‐limited upstream sources (sheet erosion, scalds, rills, gullies, mass failure, bank and bed erosion, other disturbed areas). The analysis required calibration of a key model parameter, the fraction of total stream power (F ≈ 0.025) that is effective in re‐entraining sediment. Practical recommendations are provided for the prediction of sediment loads from other alluvial gullies in the region with similar hydrogeomorphic conditions, using average stream power efficiency factors for suspended silt/clay (Fw ≈ 0.016) and sand (Fs ≈ 0.038) respectively, but with no requirement for field data on sediment concentrations. Only basic field data on settling velocity characteristics from soil samples, channel geometry measurements, estimates of water velocity and discharge, and associated error margins are needed for transport limit theory predictions of concentration and load. This theory is simpler than that required in source‐limited situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines the conservativeness of tracers through the sediment generation process. This is done by comparing a selection of tracer properties of sediment eroded from large plots by simulated rainfall, with the corresponding properties of the source materials within the plots. Sediment was generated using three simulated rainfall events for each of five selected erosion source types in the Tarago catchment, Victoria, Australia. As there were particle size and organic content differences between the source material and the generated sediment, the measured tracer properties of the source material were corrected for these differences. The possible role of analytical errors in this investigation was also addressed. The geochemical property, concentration of Fe2O3, was not conservative for any of the process sources investigated. Concentration of Al2O3 was not conservative for three of the four process sources investigated, and the sum of molecular proportions of CaO**, Na2O, K2O and Al2O3 was not conservative for two of the four process sources investigated. Mineral magnetic properties, IRM850 and χ were also found to be not conservative, although this may be the result of the complex relationship between particle size and mineral magnetic properties not being adequately accommodated in this analysis. The radionuclide tracers, 137Cs and 210Pbex, were found to be conservative through the sediment generation process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
To quantify the changes in flow energy, sediment yield and surface landform impacted by headcut height during bank gully erosion, five experimental platforms were constructed with different headcut heights ranging from 25 to 125 cm within an in situ active bank gully head. A series of scouring experiments were conducted under concentrated flow and the changes in flow energy, sediment yield and surface landform were observed. The results showed that great energy consumption occurred at gully head compared to the upstream area and gully bed. The flow energy consumption at gully heads and their contribution rates increased significantly with headcut height. Gully headcuts also contributed more sediment yield than the upstream area. The mean sediment concentrations at the outlet of plots were 2.3 to 7.3 times greater than those at the end of upstream area. Soil loss volume at gully heads and their contribution rates also increased with headcut height significantly. Furthermore, as headcut height increased, the retreat distance of gully heads increased, which was 1.7 to 8.9 times and 1.1 to 3.2 times greater than the incision depth of upstream area and gully beds. Positive correlations were found between energy consumption and soil loss, indicating that energy consumption could be used to estimate soil loss of headcut erosion. Headcut height had a significant impact on flow energy consumption, and thus influenced the changes in sediment yield and landform during the process of gully headcut erosion. Headcut height was one of the important factors for gully erosion control in this region. Further studies are needed to identify the role of headcut height under a wide condition. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   

6.
An understanding of the temporal variation in reservoir sedimentation and identification of the main sources of sediment are necessary for the maintenance of sustainable reservoirs. For this purpose, field measurements, sampling, and fingerprinting of reservoir sediment were undertaken from July 2005 to November 2007. Source fingerprinting of reservoir sediment was conducted using cesium‐137 (137Cs). The relative contributions of gully bank and forest road, and forest floor material to reservoir sediment were calculated using a mixing model. Bank and forest road material, estimated to make up about 96% of the reservoir sediment, was the dominant source. Enormous reservoir sedimentation, which amounted to about 60% of the total reservoir sedimentation during the observation period, occurred during a heavy rainstorm with an 80‐year recurrence time. To maintain the sustainability of the reservoir in this study, therefore, temporal and spatial preparation strategies for heavy rainstorms and bank and forest road erosion should be considered. However, spatial information on sediment sources from 137Cs fingerprinting is limited. To better identify the sediment sources spatially and temporally, further studies applying soil erosion models and more detailed field studies are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Gully erosion is a significant source of fine suspended sediment (<63 μm) and associated nutrient pollution to freshwater and marine waterways. Researchers, government agencies, and monitoring groups are currently using monitoring methods designed for streams and rivers (e.g., autosamplers, rising stage samplers, and turbidity loggers) to evaluate suspended sediment in gullies. This is potentially problematic because gullies have several hydrological features and monitoring operational challenges that differ to those of continually flowing streams and rivers (e.g., short and intense flows, high suspended sediment concentrations, and rapid scouring and aggradation). Here we present a laboratory and field-based assessment of the performance of common suspended sediment monitoring techniques applied to gullies. We also evaluate a recently-described method; the pumped active suspended sediment (PASS) sampler, which has been modified for monitoring suspended sediment in gully systems. Discrete autosampling provided data at high temporal resolution, however, it had poor collection efficiency (25 ± 10%) of coarser sediment particles (i.e., sand). Rising stage sampling, while robust and cost-effective, suffered from large amounts of condensation under field conditions (25–35% of sampler volume), due to harsh climatic conditions creating large diurnal temperature differences at the field site, thereby diluting sample concentrations and introducing additional measurement uncertainty. The turbidity logger exhibited a highly variable response when calibrated at each site with physically collected suspended sediment samples (R2 = 0.17–0.83), highlighting that this approach should be used with caution. The modified PASS sampler proved to be a reliable and representative measurement method for gully sediment water quality, however, the time-integrated nature of the method limits its temporal resolution compared to the other monitoring methods. We recommend monitoring suspended sediment in alluvial gully systems using a combination of complementary techniques (e.g., PASS and RS samplers) to account for the limitations associated with individual methods.  相似文献   

8.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Environmental impacts of vessels are well documented; Cu pollution as result of Cu based antifouling paints and nutrient pollution (such as N) from marine sewage are two examples of such disturbances. Understanding environmental impacts as well as the use of coastal waterways by recreational vessels is of concern to regulatory authorities, waterway users and local residents. In this study more than 55 aerial surveys were conducted of selected popular anchorages in eastern Moreton Bay, Queensland, Australia. Numbers of recreational vessels at certain times during the year were used in multiple linear regression analyses to develop predictive models for recreational vessel numbers. Over one year approximately 10,000 locally registered recreational craft (>6m length overall) generated an estimated 59,000 vessel nights. With Cu leaching rates from the literature, and estimates of sewage inputs (assuming little or no use of pump-out facilities), load estimates associated with overnight use of 20 popular anchor sites were calculated as 141+/-46 kg of Cu and 1.17+/-0.38 t of nitrogen (N) annually. More importantly, the models showed vessel activity to be highly variable, and focused at peak holiday times, with 14% of vessel activity and associated pollutant loads entering the environment during Christmas and Easter. This study highlighted the inherent difficulties in managing a popular maritime amenity and Marine Parks such as the Moreton Bay Marine Protected Area, Queensland, Australia with its variety of stakeholders and types and intensities of uses.  相似文献   

10.
We assess species composition, assemblage structure and distribution of the benthic foraminiferal assemblages from diverse substrates in Moreton Bay, South-East Queensland, Australia. Analysis of 47 surface sediment samples revealed 69 species, three distinct foraminiferal assemblages and six sub-assemblages. The assemblages from the western Bay are characterized by stress tolerant taxa and the lowest diversity, whereas the assemblages from the eastern Bay are characterized by symbiont-bearing taxa and high diversity. We found a correlation between foraminiferal assemblages and substrate conditions that was indicative of strong environmental gradients (substrate type, water quality and salinity), from an urban-impacted assemblage in the westernmost part of the Bay, to a hyposaline, estuarine-influenced assemblage in the western Bay to a nearly normal marine to hypersaline assemblage in the eastern Bay. The FORAM Index was consistent with the changes in water and sediment quality gradient, from the western shoreline to the eastern Bay. Thus the foraminiferal assemblages of Moreton Bay make excellent bio-indicators of environmental changes in a subtropical, estuarine setting in eastern Australia.  相似文献   

11.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The proportional contributions of stream bank and surface sources to fine sediment loads in watersheds in New York State were quantified with uncertainty analysis. Eroding streamside glacial drift, including glaciolacustrine deposits, were examined to help explain variations in the proportional contributions made by bank erosion. Sediment sources were quantified by comparing concentrations of the bomb‐derived radionuclide 137Cs in fluvial sediment with sediment from potential source areas such as agricultural soils, forest soils and stream banks. To compare sediment sources in streams containing abundant deposits of fine‐grained glacial drift with watersheds that lacked moderate or extensive streamside deposits, samples were taken from 15 watersheds in the region. The mean contribution of bank erosion to sediment loads in the six streams with glaciolacustrine deposits was 60% (range 46–76%). The proportional contribution of bank erosion was also important in one stream lacking glaciolacustrine deposits (57%) but was less important in the remainder, with contributions ranging from 0 to 46%. Data from this study on the varying contributions of bank erosion and data from past studies of sediment yield in 15 watersheds of New York State suggest that eroding streamside glacial deposits dominate sediment yield in many watersheds. In other watersheds, past impacts to streams, such as channelization, have also resulted in high levels of bank erosion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The assessment of post‐mining landscapes as case studies is an important part of the evaluation of current rehabilitation practices. A necessary part of this assessment is to predict the surface stability of the landform using erosion and landform evolution modelling techniques. In the short term, erosion on a rehabilitated mine site can lead to increased sediment loads and transport of other mine related contaminants in downstream waterways. It is well recognized that in many mine areas the erodibility of surface materials can, and does, vary. This is a particularly significant issue on mine sites, where the surface conditions may range from areas of undisturbed natural surface materials, waste rock dumps constructed with materials exhumed from the sub‐surface, and other areas that have a mix of waste rock and soil to enhance the growth of vegetation. A further significant issue is that when the subsurface materials are exposed to surface conditions they can weather rapidly, changing their erodibility. This paper uses a new version of the SIBERIA landscape evolution and soil erosion model to evaluate the former Nabarlek uranium mine site in the Northern Territory, Australia. This new version of SIBERIA uses spatially variable erosion and hydrology parameters across the study domain to represent different erodibilities of surface materials, thus allowing better representation of catchment heterogeneity. The results demonstrate that the model predicts erosion rates similar to that of other modelled results and independent field data, providing confidence in the model and its parameterization. The tailings, deposited in the mined out pit and capped with waste rock, appear to be safely encapsulated for the modelled period. Copyright © 2008 John Wiley & Sons, Ltd and Commonwealth of Australia (Department of the Environment and Water Resources Supervising Scientist).  相似文献   

14.
Bank erosion is the main source of suspended sediment (SS) and diffuse total phosphorus (TP) in many lowland catchments. This study compared a physically based sediment routing method (Physical method), which distinguishes between stream bed and bank erosion, with the original sediment routing method (Original method) within the Soil and Water Assessment Tool (SWAT) version 2009, for simulating SS and TP losses from a lowland catchment. A SWAT model was set up for the lowland River Odense catchment in Denmark and calibrated against observed stream flow and phosphate (PO4) loads. On the basis of an initial calibration of hydrological and PO4 parameters, the SWAT model with the Original method (Original model) and the SWAT model with the Physical method (Physical model) were calibrated separately against observed SS and TP loads. The SWAT model simulated daily stream flow well but underestimated PO4 loads. The Physical model simulated daily SS and TP better than the Original model. The simulated contribution of bank erosion to SS in the Physical model (99%) was close to the estimated contribution from in situ erosion measurements (90–94%). Compared with the Original method, the Physical method is not only more conceptually correct but also improves model performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Gully erosion is considered to be one of the most important soil erosion processes in Mediterranean marly environments, but its actual contribution to total soil loss is still under discussion. The objectives of this paper are: (a) to acquire the distributed value of erosion rate in a permanent gully developed on a marly substratum in a Mediterranean environment; and (b) to quantify the key factors responsible for the spatial and temporal differences in erosion rates observed within the gully. A permanent gully located in Cap Bon (northeastern Tunisia) has been intensively and regularly monitored over a 7-year period with electronic survey equipment (total station) to give five field topographic surveys, as well as hydrological measurements at the gully outlet. The net soil loss for the 7-year period comprised a denudation of 51 m3 of sediment on the gully bank slopes, which corresponds to a mean soil loss of 61 m3 ha?1 year?1 or 6.1 mm year?1. Denudation was observed on bed units with a slope gradient greater than 20%, while the remainder showed deposition. By confirming the factors involved in gully evolution, and by refining the statistical link between factors and erosion rates within the gully, the results provide important information to predict gully erosion rates in Mediterranean marly environments.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation El Khalili, A., Raclot, D., Habaieb, H., and Lamachère, J.M., 2013. Factors and processes of permanent gully evolution in a Mediterranean marly environment (Cape Bon, Tunisia). Hydrological Sciences Journal, 58 (7), 1519–1531.  相似文献   

16.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment tracing using geochemical properties is an efficient way to identify the spatial sources of transported sediments delivered to waterways. Here, the contribution of soil sources to river bed sediments has been quantified in Emu Creek, a headwater catchment in south eastern Queensland, Australia. Soil samples were collected from the eight major rock types present in the catchment and were related to river bed sediments collected from eight sites along the main channel. Geochemistry, as characterized by 39 elemental concentrations, was measured using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Three particle size fractions were examined, <10, 10–63 and 63–212 µm, with the three resultant mixing models showing divergent results. We conclude that the results of sediment mixing models based on the analysis of one grain size should not be assumed to apply across the entire particle size range of transported sediment, emphasizing the need to match the size fraction used in tracing studies to that size fraction of interest in downstream sinks. Furthermore, we present results highlighting the control transport distance plays in source dominance, with this particularly evident in the coarser fraction, where local sources dominate over more distant sources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The sediment delivery ratio was estimated for two periods (28 years and eight years) following reforestation of seven tributary catchments (0·33 to 0·49 km2) in the headwaters of the Waipaoa River basin, North Island, New Zealand. In these catchments, gully erosion, which largely resulted from clearance of the natural forest between 1880 and 1920, is the main source of sediment to streams. Reforestation commenced in the early 1960s in an attempt to stabilize hillslopes and reduce sediment supply. Efforts have been partially successful and channels are now degrading, though gully erosion continues to supply sediment at accelerated rates in parts of the catchment. Data from the area indicate that the sediment delivery ratio (SDR) can be estimated as a function of two variables, ψ (the product of catchment area and channel slope) and A g (the temporally averaged gully area for the period). Sediment input from gullies was determined from a well defined relationship between sediment yield and gully area. Sediment scoured from channels was estimated from dated terrace remnants and the current channel bed. Terrace remnants represent aggradation during major floods. This technique provides estimates of SDR averaged over periods between large magnitude terrace‐forming events and with the present channel bed. The technique averages out short‐term variability in sediment flux. Comparison of gully area and sediment transport between two periods (1960–1988 and 1988–1996) indicates that the annual rate of sediment yield from gullies for the later period has decreased by 77 per cent, sediment scouring in channels has increased by 124 per cent, and sediment delivered from catchments has decreased by 78 per cent. However, average SDR for the tributaries was found to be not significantly different between these periods. This may reflect the small number of catchments examined. It is also due to the fact that the volume of sediment scoured from channels was very small relative to that produced by gullies. According to the equation for SDR determined for the Waipaoa headwaters, SDR increases with increasing catchment area in the case where A g and channel slope are fixed. This is because the amount of sediment produced from a channel by scouring increases with increasing catchment area. However, this relationship does not hold for the main stem of the study catchments, because sediment delivered from its tributaries still continues to accumulate in the channel. Higher order channels are, in effect, at a different stage in the aggradation/degradation cycle and it will take some time until a main channel reflects the effects of reforestation and its bed adjusts to net degradation. Results demonstrate significant differences among even low order catchments, and such differences will need to be taken into consideration when using SDR to estimate sediment yields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
A three year monitoring programme of gully‐head retreat was established to assess the significance of sediment production in a drainage network that expanded rapidly by gully‐head erosion on the low‐angled alluvio‐lacustrine Njemps Flats in semi‐arid Baringo District, Kenya. This paper discusses the factors controlling the large observed spatial and temporal variation in gully‐head retreat rates, ranging from 0 to 15 m a?1. The selected gullies differed in planform and in runoff‐contributing catchment area but soil material and land use were similar. The data were analysed at event and annual timescales. The results show that at annual timescale rainfall amount appears to be a good indicator of gully‐head retreat, while at storm‐event timescale rainfall distribution has to be taken into account. A model is proposed, including only rainfall (P) and the number of dry days (DD) between storms: which explains 56 per cent of the variation in retreat rate of the single‐headed gully of Lam1. A detailed sediment budget has been established for Lam1 and its runoff‐contributing area (RCA). By measuring sediment input from the RCA, the sediment output by channelized flow and linear retreat of the gully head for nine storms, it can be seen that erosion shifts between different components of the budget depending on the duration of the dry period (DD) between storms. Sediment input from the RCA was usually the largest component for the smaller storms. The erosion of the gully head occurred as a direct effect of runoff falling over the edge (GHwaterfall) and of the indirect destabilization of the adjacent walls by the waterfall erosion and by saturation (GHmass/storage). The latter component (GHmass/storage) was usually much larger that the former (GHwaterfall). The sediment output from the gully was strongly related to the runoff volume while the linear retreat, because of its complex behaviour, was not. Overall, the results show that the annual retreat is the optimal timescale to predict retreat patterns. More detailed knowledge about relevant processes and interactions is necessary if gully‐head erosion is to be included in event‐based soil erosion models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号