首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The performance of watershed models in simulating stream discharge depends on the adequate representation of important watershed processes. In snow‐dominated systems, snow, surface and subsurface hydrologic processes comprise a complex network of nonlinear interactions that influence the magnitude and timing of discharge. This study aims to identify critical processes and interactions that control discharge hydrographs in five major mountainous snow‐dominated river basins in Colorado, USA. A comprehensive watershed model (Soil and Water Assessment Tool) and a variance‐based global sensitivity analysis technique (Fourier Amplitude Sensitivity Test) were used in conjunction to identify critical models parameters and processes that they represent. Average monthly streamflow and streamflow root mean square error over a period of 20 years were used as two separate objective functions in this analysis. Examination of the sensitivity of monthly streamflow revealed the influence of parameters on flow volume, whereas the sensitivity of streamflow root mean square error also exposed the influence of parameters on the timing of the hydrographs. A stability analysis was performed to investigate the computational requirements for a robust sensitivity analysis. Results show that streamflow volume is mostly influenced by shallow subsurface processes, whereas interactions between groundwater and snow processes were the key in the timing of streamflows. A large majority of important parameters were common among all study watersheds, which underlies the prospect for regionalization of process‐based hydrologic modelling in headwater river basins in Colorado. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Among other sources of uncertainties in hydrologic modeling, input uncertainty due to a sparse station network was tested. The authors tested impact of uncertainty in daily precipitation on streamflow forecasts. In order to test the impact, a distributed hydrologic model (PRMS, Precipitation Runoff Modeling System) was used in two hydrologically different basins (Animas basin at Durango, Colorado and Alapaha basin at Statenville, Georgia) to generate ensemble streamflows. The uncertainty in model inputs was characterized using ensembles of daily precipitation, which were designed to preserve spatial and temporal correlations in the precipitation observations. Generated ensemble flows in the two test basins clearly showed fundamental differences in the impact of input uncertainty. The flow ensemble showed wider range in Alapaha basin than the Animas basin. The wider range of streamflow ensembles in Alapaha basin was caused by both greater spatial variance in precipitation and shorter time lags between rainfall and runoff in this rainfall dominated basin. This ensemble streamflow generation framework was also applied to demonstrate example forecasts that could improve traditional ESP (Ensemble Streamflow Prediction) method.  相似文献   

3.
The impact of errors in the forcing, errors in the model structure and parameters, and errors in the initial conditions is investigated in a simple hydrological ensemble prediction system. The hydrological model is based on an input nonlinearity connected with a linear transfer function and forced by precipitation forecasts from the European Centre for Medium‐Range Weather Forecast (ECMWF) Ensemble Prediction System (EPS). The post‐processing of the precipitation and/or the streamflow using information from the reforecasts performed by ECMWF is tested. For this purpose, hydrological reforecasts are obtained by forcing the hydrological model with the precipitation from the reforecast data. In the present case study, it is found that the post‐processing of the hydrological ensembles with a statistical model fitted on the hydrological reforecasts improves the verification scores better than the use of post‐processed precipitation ensembles. In the case of large biases in the precipitation, combining the post‐processing of both precipitation and streamflow allows for further improvements. During the winter, errors in the initial conditions have a larger impact on the scores than errors in the model structure as designed in the experiments. Errors in the parameter values are largely corrected with the post‐processing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In order to simulate the potential effect of forecasted land‐cover change on streamflow and water availability, there has to be confidence that the hydrologic model used is sensitive to small changes in land cover (<10%) and that this land‐cover change exceeds the inherent uncertainty in forecasted conditions. To investigate this, a 26‐year streamflow record was simulated for 33 basins (54–928 km2) in the Delaware River Basin using three dates of land cover: the 2011 National Land‐Cover Dataset (Homer, Fry, & Barnes, 2012 ), 2030 land‐cover conditions representing median values from 101 equally‐likely forecasts, and 2060 land‐cover conditions corresponding to the same iterations used to represent 2030. Streamflow was simulated using a process‐based hydrologic model that includes both pervious and impervious methods as parameterized by three land‐cover‐based hydrologic response units (HRUs)—forested, agricultural, and developed land. Small, but significant differences in streamflow magnitude, variability, and seasonality were seen among the three time periods—2011, 2030, and 2060. Temporal differences were discernible from the range of conditions simulated with 101 equally likely forecasts for 2030. Development was co‐located with the most frequent landscape components, as characterized by topographic wetness index, resulting in a change in hydrology for each HRU, highlighting that knowing the location of disturbance is key to understanding potential streamflow changes. These results show that streamflow simulation using regional calibration that incorporates land‐cover‐based HRUs can be sensitive to relatively small changes in land‐cover and that temporal trends resulting from land‐cover change can be isolated in order to evaluate other changes that might affect water resources.  相似文献   

5.
Despite many recent improvements, ensemble forecast systems for streamflow often produce under‐dispersed predictive distributions. This situation is problematic for their operational use in water resources management. Many options exist for post‐processing of raw forecasts. However, most of these have been developed using meteorological variables such as temperature, which displays characteristics very different from streamflow. In addition, streamflow data series are often very short or contain numerous gaps, thus compromising the estimation of post‐processing statistical parameters. For operational use, a post‐processing method has to be effective while remaining as simple as possible. We compared existing post‐processing methods using normally distributed and gamma‐distributed synthetic datasets. To reflect situations encountered with ensemble forecasts of daily streamflow, four normal distribution parameterizations and six gamma distribution parameterizations were used. Three kernel‐based approaches were tested, namely, the ‘best member’ method and two improvements thereof, and one regression‐based approach. Additional tests were performed to assess the ability of post‐processing methods to cope with short calibration series, missing values or small numbers of ensemble members. We thus found that over‐dispersion is best corrected by the regression method, while under‐dispersion is best corrected by kernel‐based methods. This work also shows key limitations associated with short data series, missing values, asymmetry and bias. One of the improved best member methods required longer series for the estimation of post‐processing parameters, but if provided with adequate information, yielded the best improvement of the continuous ranked probability score. These results suggest guidelines for future studies involving real operational datasets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Forecast ensembles of hydrological and hydrometeorologial variables are prone to various uncertainties arising from climatology, model structure and parameters, and initial conditions at the forecast date. Post‐processing methods are usually applied to adjust the mean and variance of the ensemble without any knowledge about the uncertainty sources. This study initially addresses the drawbacks of a commonly used statistical technique, quantile mapping (QM), in bias correction of hydrologic forecasts. Then, an auxiliary variable, the failure index (γ), is proposed to estimate the ineffectiveness of the post‐processing method based on the agreement of adjusted forecasts with corresponding observations during an analysis period prior to the forecast date. An alternative post‐processor based on copula functions is then introduced such that marginal distributions of observations and model simulations are combined to create a multivariate joint distribution. A set of 2500 hypothetical forecast ensembles with parametric marginal distributions of simulated and observed variables are post‐processed with both QM and the proposed multivariate post‐processor. Deterministic forecast skills show that the proposed copula‐based post‐processing is more effective than the QM method in improving the forecasts. It is found that the performance of QM is highly correlated with the failure index, unlike the multivariate post‐processor. In probabilistic metrics, the proposed multivariate post‐processor generally outperforms QM. Further evaluation of techniques is conducted for river flow forecast of Sprague River basin in southern Oregon. Results show that the multivariate post‐processor performs better than the QM technique; it reduces the ensemble spread and is a more reliable approach for improving the forecast. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrological and statistical models are playing an increasing role in hydrological forecasting, particularly for river basins with data of different temporal scales. In this study, statistical models, e.g. artificial neural networks, adaptive network-based fuzzy inference system, genetic programming, least squares support vector machine, multiple linear regression, were developed, based on parametric optimization methods such as particle swarm optimization (PSO), genetic algorithm (GA), and data-preprocessing techniques such as wavelet decomposition (WD) for river flow modelling using daily streamflow data from four hydrological stations for a period of 1954–2009. These models were used for 1-, 3- and 5-day streamflow forecasting and the better model was used for uncertainty evaluation using bootstrap resampling method. Meanwhile, a simple conceptual hydrological model GR4J was used to evaluate parametric uncertainty based on generalized likelihood uncertainty estimation method. Results indicated that: (1) GA and PSO did not help improve the forecast performance of the model. However, the hybrid model with WD significantly improved the forecast performance; (2) the hybrid model with WD as a data preprocessing procedure can clarify hydrological effects of water reservoirs and can capture peak high/low flow changes; (3) Forecast accuracy of data-driven models is significantly influenced by the availability of streamflow data. More human interferences from the upper to the lower East River basin can help to introduce greater uncertainty in streamflow forecasts; (4) The structure of GR4J may introduce larger parametric uncertainty at the Longchuan station than at the Boluo station in the East river basin. This study provides a theoretical background for data-driven model-based streamflow forecasting and a comprehensive view about data and parametric uncertainty in data-scarce river basins.  相似文献   

8.
A continuous Soil Conservation Service (SCS) curve number (CN) method that considers time‐varied SCS CN values was developed based on the original SCS CN method with a revised soil moisture accounting approach to estimate run‐off depth for long‐term discontinuous storm events. The method was applied to spatially distributed long‐term hydrologic simulation of rainfall‐run‐off flow with an underlying assumption for its spatial variability using a geographic information systems‐based spatially distributed Clark's unit hydrograph method (Distributed‐Clark; hybrid hydrologic model), which is a simple few parameter run‐off routing method for input of spatiotemporally varied run‐off depth, incorporating conditional unit hydrograph adoption for different run‐off precipitation depth‐based direct run‐off flow convolution. Case studies of spatially distributed long‐term (total of 6 years) hydrologic simulation for four river basins using daily NEXRAD quantitative precipitation estimations demonstrate overall performances of Nash–Sutcliffe efficiency (ENS) 0.62, coefficient of determination (R2) 0.64, and percent bias 0.33% in direct run‐off and ENS 0.71, R2 0.72, and percent bias 0.15% in total streamflow for model result comparison against observed streamflow. These results show better fit (improvement in ENS of 42.0% and R2 of 33.3% for total streamflow) than the same model using spatially averaged gauged rainfall. Incorporation of logic for conditional initial abstraction in a continuous SCS CN method, which can accommodate initial run‐off loss amounts based on previous rainfall, slightly enhances model simulation performance; both ENS and R2 increased by 1.4% for total streamflow in a 4‐year calibration period. A continuous SCS CN method‐based hybrid hydrologic model presented in this study is, therefore, potentially significant to improved implementation of long‐term hydrologic applications for spatially distributed rainfall‐run‐off generation and routing, as a relatively simple hydrologic modelling approach for the use of more reliable gridded types of quantitative precipitation estimations.  相似文献   

9.
A reliable prediction of hydrologic models, among other things, requires a set of plausible parameters that correspond with physiographic properties of the basin. This study proposes a parameter estimation approach, which is based on extracting, through hydrograph diagnoses, information in the form of indices that carry intrinsic properties of a basin. This concept is demonstrated by introducing two indices that describe the shape of a streamflow hydrograph in an integrated manner. Nineteen mid‐size (223–4790 km2) perennial headwater basins with a long record of streamflow data were selected to evaluate the ability of these indices to capture basin response characteristics. An examination of the utility of the proposed indices in parameter estimation is conducted for a five‐parameter hydrologic model using data from the Leaf River, located in Fort Collins, Mississippi. It is shown that constraining the parameter estimation by selecting only those parameters that result in model output which maintains the indices as found in the historical data can improve the reliability of model predictions. These improvements were manifested in (a) improvement of the prediction of low and high flow, (b) improvement of the overall total biases, and (c) maintenance of the hydrograph's shape for both long‐term and short‐term predictions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

12.
In a water‐stressed region, such as the western United States, it is essential to have long lead times for streamflow forecasts used in reservoir operations and water resources management. Current water supply forecasts provide a 3‐month to 6‐month lead time, depending on the time of year. However, there is a growing demand from stakeholders to have forecasts that run lead times of 1 year or more. In this study, a data‐driven model, the support vector machine (SVM) based on the statistical learning theory, was used to predict annual streamflow volume with a 1‐year lead time. Annual average oceanic–atmospheric indices consisting of the Pacific decadal oscillation, North Atlantic oscillation (NAO), Atlantic multidecadal oscillation, El Niño southern oscillation (ENSO), and a new sea surface temperature (SST) data set for the ‘Hondo’ region for the period of 1906–2006 were used to generate annual streamflow volumes for multiple sites in the Gunnison River Basin and San Juan River Basin, both located in the Upper Colorado River Basin. Based on the performance measures, the model showed very good forecasts, and the forecasts were in good agreement with measured streamflow volumes. Inclusion of SST information from the Hondo region improved the model's forecasting ability; in addition, the combination of NAO and Hondo region SST data resulted in the best streamflow forecasts for a 1‐year lead time. The results of the SVM model were found to be better than the feed‐forward, back propagation artificial neural network and multiple linear regression. The results from this study have the potential of providing useful information for the planning and management of water resources within these basins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Low‐flow characteristics can be estimated by multiple linear regressions or the index‐streamgage approach. The latter transfers streamflow information from a hydrologically similar, continuously gaged basin (‘index streamgage’) to one with a very limited streamflow record, but often results in biased estimates. The application of the index‐streamgage approach can be generalized into three steps: (1) selection of streamflow information of interest, (2) definition of hydrologic similarity and selection of index streamgage, and (3) application of an information‐transfer approach. Here, we explore the effects of (1) the range of streamflow values, (2) the areal density of streamgages, and (3) index‐streamgage selection criteria on the bias of three information‐transfer approaches on estimates of the 7‐day, 10‐year minimum streamflow (Q7, 10). The three information‐transfer approaches considered are maintenance of variance extension, base‐flow correlation, and ratio of measured to concurrent gaged streamflow (Q‐ratio invariance). Our results for 1120 streamgages throughout the United States suggest that only a small portion of the total bias in estimated streamflow values is explained by the areal density of the streamgages and the hydrologic similarity between the two basins. However, restricting the range of streamflow values used in the index‐streamgage approach reduces the bias of estimated Q7, 10 values substantially. Importantly, estimated Q7, 10 values are heavily biased when the observed Q7, 10 values are near zero. Results of the analysis also showed that Q7, 10 estimates from two of the three index‐streamgage approaches have lower root‐mean‐square error values than estimates derived from multiple regressions for the large regions considered in this study. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

15.
Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.  相似文献   

17.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
19.
For many basins, identifying changes to water quality over time and understanding current hydrologic processes are hindered by fragmented and discontinuous water‐quality and hydrology data. In the coal mined region of the New River basin and Indian Fork sub‐basin, muted and pronounced changes, respectively, to concentration–discharge (C–Q) relationships were identified using linear regression on log‐transformed historical (1970s–1980s) and recent (2000s) water‐quality and streamflow data. Changes to C–Q relationships were related to coal mining histories and shifts in land use. Hysteresis plots of individual storms from 2007 (New River) and the fall of 2009 (Indian Fork) were used to understand current hydrologic processes in the basins. In the New River, storm magnitude was found to be closely related to the reversal of loop rotation in hysteresis plots; a peak‐flow threshold of 25 cubic meters per second (m3/s) segregates hysteresis patterns into clockwise and counterclockwise rotational groups. Small storms with peak flow less than 25 m3/s often resulted in dilution of constituent concentrations in headwater tributaries like Indian Fork and concentration of constituents downstream in the mainstem of the New River. Conceptual two or three component mixing models for the basins were used to infer the influence of water derived from spoil material on water quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Jing Zhang  Mark Ross 《水文研究》2012,26(24):3770-3778
Clay‐settling areas (CSAs) are one of the most conspicuous and development‐limiting landforms remaining after phosphate mining. Many questions are asked by the mining and regulatory communities with regard to the correct modelling (predictive) methods and assumptions that should be used to yield viable hydrologic post‐reclamation landforms within CSAs. Questions as to the correct methodology to use in modelling/predicting long‐term CSA hydrologic performance have historically been difficult to answer because the data and analysis to support popular hypotheses did not exist. The goal of this paper was to substantially improve the data, analysis and predictive methodology necessary to return CSAs to viable hydrologic units, and moreover, to develop better understanding of the hydrology of CSAs and their ability to support wetlands. The study site is located at the Fort Meade Mine in Polk County, Florida. In this paper, continuous model simulation and calibration of study site were conducted for the hydrologic model, Hydrological Simulation Program – FORTRAN, which was generally selected on the basis of its popularity in predicting the hydrologic behaviour of CSAs. The objective of this study was to simulate streamflow discharges and stage to estimate runoff response from these areas on the basis of the observed rainfall within the CSA. A set of global hydrologic parameters was selected and tested during the calibration by the parameter estimation software PEST. A comparison of the simulated and observed flow data indicates that the model calibration adequately reproduces the hydrologic response of the CSAs. The estimated parameters can be used as references for future application of the model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号