首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

2.
Although unpaved roads are well‐recognized as important sources of Hortonian overland flow and sediment in forested areas, their role in agriculturally‐active rural settings still lacks adequate documentation. In this study, we assessed the effect of micro‐catchment size, slope, and ground cover on runoff and sediment generation from graveled roadbeds servicing a rural area in southern Brazil. Fifteen replications based on 30‐min‐long simulated rainfall experiments were performed at constant rainfall intensities of 22–58 mm h?1 on roadbeds with varying characteristics including ~3–7 m2 micro‐catchment areas, 2–11° slopes, 2–9.7‐m‐long shallow rill features, and 30–100% gravel cover. The contributions of micro‐catchment size and rill length were the most important physical characteristics affecting runoff response and sediment production; both the size of the micro‐catchment and the length of the rills were inversely related to sediment loss and this contradicts most of the rill erosion literature. The effect of micro‐catchment size on runoff and sediment response suggests a potentially problematic spatial‐scale subjectivity of experimental plot results. The inverse relationship between rill length and sediment generation is interpreted here as related to the predominance of coarse fragments within rills, the inability of the shallow flows generated during the simulations to erode this sediment, and their role as zones of net sediment storage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A total of 15 rainfall simulation experiments were conducted in a 1 m by 2 m box varying slope (10, 20, 30%) and rainfall intensity (60, 90, 120 mm h?1). The experiments were performed to study how rill networks initiate and evolve over time under controlled conditions with regard to the treatment variables considered, and to allow for input in a computer simulation model. Runoff and sediment yield samples were collected. Digital elevation models were calculated by means of photogrammetry for several time steps of most experiments. The soil used in the experiments was a basal till derived Cambisol typical for the Swiss Plateau. While significant differences were found for sediment yield, runoff did not vary significantly with treatment combinations. Increasing rainfall intensity had a larger effect on sediment yield than increasing slope. Rill density and energy expenditure decreased with time, suggesting that energy expenditure was a useful parameter to describe the emergence of rill network at the laboratory scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
《国际泥沙研究》2022,37(5):653-661
Granite red soil (GRS) and Quaternary red clay (QRC) are two typical erodible soils in the red-soil region of southern China. Analytical and comparative studies of the characteristics of runoff and sediment yield for the two soils at various slopes are currently needed. The purpose of the current study was to clarify the characteristics of runoff and sediment yield for GRS and QRC at different slopes and to establish models for estimating sediment yield for the two soils. Forty-eight runoff microplots with four slopes (5°, 15°, 25°, and 35°) and two soils (GRS and QRC) were established and exposed to natural rainfall. Runoff and sediment yield were measured 10 times during the study period. Runoff and sediment yield for the two soils under the various slopes had similar temporal variations, and both increased with prior cumulative erosive rainfall. Runoff for GRS and QRC was moderately temporally variable, with coefficients of variation (CVs) from 46.2% to 60.6%, and sediment yield for QRC was strongly temporally variable, with CVs from 114.8% to 145.8%. Sediment yield for GRS increased with slope, but sediment yield for QRC first increased and then decreased, with a calculated inflection point of 18°, but runoff for both soils decreased with slope. The CVs of both runoff and sediment yield with slope for the two soils ranged from 3.6% to 88.0%, lower than the temporal variabilities, indicating that rainfall may have a larger impact than slope on runoff and sediment yield for QRC and GRS. Under the various slopes, runoff and sediment yield for both soils increased with rainfall and sediment yield increased with runoff, but the proportions of effective rainfall and runoff differed. Pedotransfer-function models based on rainfall, runoff, and slope accurately estimated sediment yield for the two soils, with the model fit coefficient of determination (R2) > 0.81 and the R2 for verification >0.79. These results improve the understanding of the laws governing erosion for different soil types in the red-soil region of southern China and are important for managing the erosion of collapsing gullies and sloping farmland in the region.  相似文献   

6.
In the region of the basaltic plateau in Southern Brazil, problems of runoff and erosion on the deep ferrallitic soils are becoming increasingly recognized. Land use change from conventional tillage using disk plough to no‐tillage on residues without terracing occurred at the beginning of the 1990s and it spread very quickly. Measurements of runoff and sediment concentrations on 1 m2 plots receiving natural rainfall and simulated rainfall under different crops with different stages of growth and different tillage systems, field surveys and measurements of rills and gullies in nested experimental catchments indicate a relative decrease of runoff on slopes but an increase of subsurface flow, and a marked decrease of sheet and rill erosion and soil loss from plot to catchment scales. Nevertheless, the extension of parts of the gully system is still continuing, strongly influenced by extreme rainfall. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Sediment delivery on rill and interrill areas   总被引:4,自引:0,他引:4  
Equations which relate sediment delivery to a power function of flow rate and slope gradient were evaluated in this study. The data used to parameterize the equations were obtained from sites where crop residues had been removed, and moldboard plowing and disking had occurred. Measurements of sediment delivery resulting from simulated rainfall were obtained from preformed rills and interrill areas. The equations provided reliable sediment delivery estimates for selected soils located throughout the United States. To use the sediment delivery equations, soil-related parameter values must be identified. Multiple regression analyses were performed to relate parameter values used in the equations to selected soil properties. Equations were also developed for estimating rill sediment delivery under rainfall conditions from rill soil loss and discharge data collected without the addition of rainfall. The equations identified in this study, and appropriate soils information, can be used to predict sediment delivery on both rill and interrill areas.  相似文献   

8.
The European Soil Erosion Model (EUROSEM) is a dynamic distributed model, able to simulate sediment transport, erosion and deposition over the land surface by rill and interill processes in single storms for both individual fields and small catchments. Model output includes total runoff, total soil loss, the storm hydrograph and storm sediment graph. Compared with other erosion models, EUROSEM has explicit simulation of interill and rill flow; plant cover effects on interception and rainfall energy; rock fragment (stoniness) effects on infiltration, flow velocity and splash erosion; and changes in the shape and size of rill channels as a result of erosion and deposition. The transport capacity of runoff is modelled using relationships based on over 500 experimental observations of shallow surface flows. EUROSEM can be applied to smooth slope planes without rills, rilled surfaces and surfaces with furrows. Examples are given of model output and of the unique capabilities of dynamic erosion modelling in general. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   

10.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

11.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   

12.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The magnitude, frequency, and duration of erosive rainfall on bare arable soils is investigated within an area of sandy soils in east Shropshire. Rainfall parameters are compared with runoff and erosion from ten 25 m2 runoff plots, maintained in a bare condition on slopes of varying steepness. On rain-drop compacted (capped) soils measured erosion rates of ≦ 42.7t ha?1 occur during individual storms. Erosion rates increase markedly with slope and on slopes > ? 13° are largely attributable to rill erosion. Prolonged duration, low intensity events cause relatively little erosion; most is accomplished by short duration, high intensity (> 10 mm h?1) convective rainstorms. Comparison of measured erosion-producing events and long-term rainfall records indicate that potentially erosive storms are quite frequent, and are most likely to cause erosion in late spring/early summer.  相似文献   

15.
Rill network development not only potentially affects hillslope and drainage network evolution, but also causes severe soil degradation. However, the studies on rill network development remain inconclusive. This study aimed to investigate the temporal and spatial development of hillslope rill networks and their characteristics based on rainfall simulations and field observations. A soil pan (10.0 m long × 3.0 m wide × 0.5 m deep) on a 20° slope was applied three successive simulated rains at two intensities of 50 and 100 mm h–1. The field observations were performed on two bare hillslope runoff plots (10.0 m long × 3.0 m wide) at 20°. Three typical erosive natural rainfall events were observed in the field, and rills were measured in detail, similar to the laboratory rainfall simulation. The results indicated that with increases in rainfall events, the rill network morphology varied from incipient formation to the maximum drainage network density. Four rill network development indicators (rill distribution density, distance between rills, rill bifurcation number, and confluence point number) exhibited different changes over time and space. Among the four indicators, the rill bifurcation number was the best indicator for describing rill network development. Rill flow energy increased and decreased cyclically on a slope ranging between ~3 and 4 m. Moreover, rill networks on loessial hillslopes generally evolved into dendritic rather than parallel forms. The development characteristics of the rill network were relatively similar between the laboratory simulation and natural field conditions. Over time, rill erosion control measures become increasingly difficult to implement as the rill network develops. The morphology of eroding rills evolved over time and space, which led to corresponding rill network development. Further study should quantify the impacts of rill network development on soil degradation and land development. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

18.
In?ltration tests, soil mapping and soil property analysis were used to assess the effect of within‐storm rainfall conditions on spatial patterns of surface characteristics relevant for runoff generation, continuity and erosion in the Zin Valley Badlands. Runoff and erosion differ strongly between ridges and slopes. Soils at both locations are susceptible to sealing, but on the sideslopes deep desiccation cracks inhibit continuous ?ow, even during high magnitude rainstorms. The discontinuous nature of runoff has a feedback on surface conditions. Erosion on the ridges maintains shallow soils prone to sealing while in?ltration and deposition on the sideslopes enhance soil depth, a prerequisite for stable desiccation cracks. Some runoff generated on the ridges is transmitted to the valley via rills. On straight sideslopes, rills are single and often discontinuous, indicating limited frequency of continuous runoff. Along concave valley heads, rill systems are well integrated and continuous, concentrating runoff and reducing in?ltration losses along slopes. The longitudinal, V‐shaped valley morphology of small catchments in the Zin Valley Badlands re?ects the long‐term effect of different erosion rates in valley heads and on sideslopes. Over time, valley incision lengthened the sideslopes, reducing the portion of annual rainfall that was runoff‐effective. Once sideslopes reached a critical length that inhibited frequent continuous ?ow, a colluvium with an increased in?ltration capacity developed, reducing runoff frequency even further. Consequently, erosion on the valley sideslopes decreased. Continuous ?ow from ridges to the valley channel remained more common in integrated rill systems in concavities and valley heads, leading to more erosion and retreat of the valley heads. The spatial patterns of runoff and erosion in the Zin Valley Badlands demonstrate that landscape development is strongly affected by processes that lead to differentiation of soil properties on hillslopes with uniform lithology. The patterns of surface characteristics and their role in landscape development are strongly dependent on rainfall conditions, highlighting the need for geomorphologists to identify the dynamic spatial and temporal scales relevant for landscape development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The bulk of eroded soils measured at the outlets of plots, slopes and watersheds are suspended sediments, splash‐induced sheet erosion. It is depending on rainfall intensity and antecedent soil moisture contents and contributes to a significant proportion of soil loss that usually is ignored in soil erosion and sediment studies. A digital image processing method for tracing and measuring non‐suspended soil particles detached/transported by splash/runoff was therefore used in the present study. Accordingly, fine mineral pumice grains aggregated with white cement and coloured with yellow pigment powder, with the same size, shape and specific gravity as those of natural soil aggregates, called synthetic color‐contrast aggregates, were used as tracers for detecting soil particle movement. Subsequently, the amount of non‐suspended soil particles detached and moved downward the slope was inferred with the help of digital image processing techniques using MATLAB R2010B software (Mathworks, Natick, Massachusetts, USA). The present study was conducted under laboratory conditions with four simulated rainfall intensities between 30–90 mm h‐1, five antecedent soil moisture contents between 12–44 % v v‐1 and a slope of 30%, using sandy loam soils taken from a summer rangeland in the Alborz Mountains, Northern Iran. A range of total transported soil between 90.34 and 1360.93 g m‐2 and net splash erosion between 36.82 and 295.78 g m‐2were observed. The results also showed the sediment redeposition ratio ranging from 87.27% [sediment delivery ratio (SDR) = 12.73%] to 96.39% (SDR = 3.61%) in various antecedent soil moisture contents of rainfall intensity of 30 mm h‐1 and from 80.55% (SDR = 19.45%) to 89.42% (SDR = 10.58%) in rainfall intensity of 90 mm h‐1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A replicated field study using rainfall simulation and overland flow application was conducted in central Oahu, Hawaii, on a clay‐dominated Oxisol with a 9% slope. Three main treatment groups were examined: a bare treatment, a group of four rolled erosion control systems (RECSs) with open weave designs, and a group of five randomly oriented fibre RECSs. A total of 1122 measurements of runoff and erosion were made to examine treatment differences and to explore temporal patterns in runoff and sediment flux. All erosion control systems significantly delayed the time required to generate plot runoff under both simulated rainfall (35 mm h?1) and the more intense trickle flow application (114 mm h?1). Once runoff was generated during the rainfall application phase, the bare treatment runoff coefficients were significantly lower than those from the two groups of RECSs, as surface seal disruption by rilling is inferred to have enhanced infiltration in the bare treatments. During the more intense phase of overland flow application, the reverse pattern was observed. Interrill contributing‐area roughness was reduced on the bare treatment, facilitating increased runoff to well‐developed rill networks. Meanwhile, the form roughness associated with the RECSs delayed interrill flow to the poorly organized rills that formed under some of the RECSs. Regardless of runoff variations between treatments, sediment output was significantly lower from all surfaces covered by RECSs. The median cumulative sediment output from the bare surfaces was 6·9 kg, compared with 1·2 kg from the open‐weave RECSs and 0·2 kg from the random‐fibre RECSs. The random‐fibre systems were particularly effective under the more stressful overland flow application phase, with 63 times less sediment eroded than the bare treatments and 12 times less than that from the open‐weave systems. Architectural design differences between the two groups of RECSs are discussed in light of their relation to erosion process dynamics and shear stress partitioning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号