首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

2.
J. Holden  T. P. Burt 《水文研究》2002,16(13):2537-2557
Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3–12 mm h?1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low‐intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation‐excess overland flow generation. Rainfall–runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady‐state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrometric and isotopic (oxygen-18) observations were used to delineate the runoff processes operating in several headwater catchments on the Precambrian Shield of Canada. The catchments comprise patches of conifer forest situated on thin soils among areas of lichen-covered granitic bedrock. Horton overland flow occurred from the lichen-bedrock areas in all precipitation events that exceeded 4–6 mm. Runoff from the forest stands occurred mainly as subsurface stormflow, but in some instances saturation overland flow was observed. The occurrence of saturation overland flow was controlled by the topography of the bedrock beneath the forest soils. The area contributing runoff and the pathway by which water was conveyed to the catchment outflow switched from the open lichen-bedrock areas producing overland flow on the rising limb of the storm hydrograph to the forest stands contributing subsurface stormflow on the recession limb of the hydrograph. The areal extent and position of the landscape units in the basin were important to the rate and magnitude of stormflow production. Runoff was generated from the catchments only during and immediately after snowmelt and/or rainfall events. The catchments were dry and/or frozen for about 70% of the year.  相似文献   

4.
Little is known about the processes of infiltration and water movement in the upper layers of blanket peat. A tension infiltrometer was used to measure hydraulic conductivity in a blanket peat in the North Pennines, England. Measurements were taken from the surface down to 20 cm in depth for peat under four different vegetation covers. It was found that macropore flow is a significant pathway for water in the upper layers of this soil type. It was also found that peat depth and surface vegetation cover were associated with macroporosity and saturated hydraulic conductivity. The proportion of macropore flow was found to be greater at 5 cm depth than at 0, 10 and 20 cm depth. Peat beneath a Sphagnum cover tends to be more permeable and a greater proportion of macropore flow can occur beneath this vegetation type. Functional macroporosity and matrix flow in the near‐surface layers of bare peat appear to have been affected by weathering processes. Comparision of results with rainfall records demonstrates that infiltration‐excess overland flow is unlikely to be a common runoff‐generating mechanism on blanket peat; rather, a saturation‐excess mechanism combined with percolation‐excess above much less permeable layers dominates the runoff response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
In peatlands, fluvial erosion can lead to a dramatic decline in hydrological function, major changes in the net carbon balance and loss of biodiversity. Climate and land management change are thought to be important influences on rates of peat erosion. However, sediment production in peatlands is different to that of other soils and no models of erosion specifically for peatlands currently exist. Hence, forecasting the influence of future climate or spatially‐distributed management interventions on peat erosion is difficult. The PESERA‐GRID model was substantially modified in this study to include dominant blanket peat erosion processes. In the resulting fluvial erosion model, PESERA‐PEAT, freeze–thaw and desiccation processes were accounted for by a novel sediment supply index as key features of erosion. Land management practices were parameterized for their influence on vegetation cover, biomass and soil moisture condition. PESERA‐PEAT was numerically evaluated using available field data from four blanket peat‐covered catchments with different erosion conditions and management intensity. PESERA‐PEAT was found to be robust in modelling fluvial erosion in blanket peat. A sensitivity analysis of PESERA‐PEAT showed that modelled sediment yield was more sensitive to vegetation cover than other tested factors such as precipitation, temperature, drainage density and ditch/gully depth. Two versions of PESERA‐PEAT, equilibrium and time‐series, produced similar results under the same environmental conditions, facilitating the use of the model at different scales. The equilibrium model is suitable for assessing the high‐resolution spatial variability of average monthly peat erosion over the study period across large areas (national or global assessments), while the time‐series model is appropriate for investigating continuous monthly peat erosion throughout study periods across smaller areas or large regions using a coarser‐spatial resolution. PESERA‐PEAT will therefore support future investigations into the impact of climate change and management options on blanket peat erosion at various spatial and temporal scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
We investigated the effects of ditch blocking on fluvial carbon concentrations and fluxes at a 5‐year, replicated, control‐intervention field experiment on a blanket peatland in North Wales, UK. The site was hydrologically instrumented, and run‐off via open and blocked ditches was analysed for dissolved organic carbon (DOC), particulate organic carbon, dissolved carbon dioxide, and dissolved methane. DOC was also analysed in peat porewater and overland flow. The hillslope experiment was embedded within a paired control‐intervention catchment study, with 3 years of preblocking and 6 years of postblocking data. Results from the hillslope showed large reductions in discharge via blocked ditches, with water partly redirected into hillslope surface and subsurface flows, and partly into remaining open ditches. We observed no impacts of ditch blocking on DOC, particulate organic carbon, dissolved carbon dioxide or methane in ditch waters, DOC in porewaters or overland flow, or stream water DOC at the paired catchment scale. Similar DOC concentrations in ditch water, overland flow, and porewater suggest that diverting flow from the ditch network to surface or subsurface flow had a limited impact on concentrations or fluxes of DOC entering the stream network. The subdued response of fluvial carbon to ditch blocking in our study may be attributable to the relatively low susceptibility of blanket peatlands to drainage, or to physical alterations of the peat since drainage. We conclude that ditch blocking cannot be always be expected to deliver reductions in fluvial carbon loss, or improvements in the quality of drinking water supplies.  相似文献   

7.
Topographic controls upon soil macropore flow   总被引:1,自引:0,他引:1  
Macropores are important components of soil hydrology. The spatial distribution of macropore flow as a proportion of saturated hydraulic conductivity was tested on six humid–temperate slopes using transects of tension infiltrometer measurements. Automated water table and overland flow monitoring allowed the timing of, and differentiation between, saturation‐excess overland flow and infiltration‐excess overland flow occurrence on the slopes to be determined and related to tension‐infiltrometer measurements. Two slopes were covered with blanket peat, two with stagnohumic gleys and two with brown earth soils. None of the slopes had been disturbed by agricultural activity within the last 20 years. This controlled the potential for tillage impacts on macropores. The proportion of near‐surface macropore flow to saturated hydraulic conductivity was found to vary according to slope position. The spatial patterns were not the same for all hillslopes. On the four non‐peat slopes there was a relationship between locations of overland flow occurrence and reduced macroporosity. This relationship did not exist for the peat slopes investigated because they experienced overland flow across their whole slope surfaces. Nevertheless, they still had a distinctive spatial pattern of macropore flow according to slope position. For the other soils tested, parts of slopes that were susceptible to saturation‐excess overland flow (e.g. hilltoes or flat hilltops) tended to have least macropore flow. To a lesser extent, for the parts of slopes susceptible to infiltration‐excess overland flow, the proportion of macropore flow as a component of infiltration was also smaller compared with the rest of the slope. The roles of macropore creation and macropore infilling by sheet wash are discussed, and it is noted that the combination of these may result in distinctive topographically controlled spatial patterns of macropore flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event‐water signature of overland flow, or (b) the pre‐event water signature of return flow. We used a high‐resolution hydrochemical data set of stormflow and end‐members of multiple storms in an end‐member mixing analysis to determine the number of end‐members needed to explain stormflow, characterize and identify potential end‐members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end‐members in stormflow mixing space suggest that saturation excess overland flow (26–48%) and return flow from two different subsurface storage pools (17–53%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within‐event resolution hydrochemical data to assess the full range and dynamics of flow paths.  相似文献   

9.
Highly seasonal boreal catchments are hydrologically complex and generally data poor and, hence, are ripe for investigation using tracer‐aided hydrologic models. The influence of physiography on isotopic metrics was assessed to identify the catchment characteristics dominating evaporative enrichment. A multiyear stable isotope of water dataset was collected at the outlets of 16 boreal catchments in central Canada ranging in area from 12 to 15,282 km2. Physiographic characteristics were obtained through raster analysis of freely available land cover images, stream networks, and digital elevation models. Correlation analysis indicated that as the percentage coverage of open water increased, so too did the evaporative effects observed at the catchment outlet. Correlation to wetland metrics indicated that increasing the percentage coverage of wetlands can reduce or increase evaporative effects observed, depending on the isotopic metric used and the corresponding drainage density, catchment slope, and presence of headwater lakes. The slopes of river evaporative‐mixing lines appear to reflect multifaceted relationships, strongest between catchment slope, headwater lakes, and connected wetlands, whereas mean line‐conditioned excess is more directly linked to physiographic variables. Hence, the slopes of river evaporative‐mixing lines and mean line‐conditioned excess are not interchangeable metrics of evaporative enrichment in a catchment. Relationships identified appear to be independent of catchment scale. These results suggest that adequate inclusion of the distribution of open water throughout a catchment, adequate representation of wetland processes, catchment slope, and drainage density are critical characteristics to include in tracer‐aided hydrologic models in boreal environments in order to minimize structural uncertainty.  相似文献   

10.
Hydrological classification systems seek to provide information about the dominant processes in the catchment to enable information to be transferred between catchments. Currently, there is no widely agreed‐upon system for classifying river catchments. This paper develops a novel approach to classifying catchments based on the temporal dependence structure of daily mean river flow time series, applied to 116 near‐natural ‘benchmark’ catchments in the UK. The classification system is validated using 49 independent catchments. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment and can thus be used to assess the influence catchment characteristics have on moderating the precipitation‐to‐flow relationship. Semi‐variograms were computed for the 116 benchmark catchments to provide a robust and efficient way of characterising temporal dependence. Cluster analysis was performed on the semi‐variograms, resulting in four distinct clusters. The influence of a wide range of catchment characteristics on the semi‐variogram shape was investigated, including: elevation, land cover, physiographic characteristics, soil type and geology. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and/or the storage in the catchment. Quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un‐gauged catchments. This method could form the basis for future regionalisation strategies, as a way of transferring information on the precipitation‐to‐flow relationship between gauged and un‐gauged catchments. © 2014 The Authors. Hydrological Processes by published by John Wiley & Sons, Ltd.  相似文献   

11.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Ditch blocking in blanket peatlands is common as part of peatland restoration. The effects of ditch blocking on flow regimes and nearby water tables were examined in a field trial. After an initial 6‐month monitoring period, eight ditches had peat dams installed 10 m apart along their entire length (dammed), four of these ditches were also partially infilled through bank reprofiling (reprofiled). Four ditches were left open with no dams or reprofiling (open). These 12 ditches and the surrounding peat were monitored for 4 more years. An initial five‐fold reduction in discharge occurred in the dammed and the reprofiled ditches with the displaced water being diverted to overland flow and pathways away from the ditches. However, there was a gradual change over time in ditch flow regime in subsequent years, with the overall volume of water leaving the dammed and the reprofiled ditches increasing per unit of rainfall to around twice that which occurred in the first year after blocking. Hence, monitoring for greater than one year is important for understanding hydrological impacts of peatland restoration. Overland flow and flow in the upper ~4 cm of peat was common and occurred in the inter‐ditch areas for over half of the time after ditch blocking. There was strong evidence that topographic boundaries of small ditch catchments, despite being defined using a high‐resolution Light Detection And Ranging‐based terrain model, were not always equivalent to actual catchment areas. Hence, caution is needed when upscaling area‐based fluxes, such as aquatic carbon fluxes, from smaller scale studies including those using ditches and small streams. The effect of ditch blocking on local water tables was spatially highly variable but small overall (time‐weighted mean effect <2 cm). Practitioners seeking to raise water tables through peatland restoration should first be informed either by prior measurement of water tables or by spatial modelling to show whether the peatland already has shallow water tables or whether there are locations that could potentially undergo large water‐table recoveries.  相似文献   

13.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In response to growing concern about impacts of upland agricultural land management on flood risk, an intensely instrumented experimental catchment has been established at Pontbren, a sheep‐farmed headwater catchment of the River Severn, UK. Primary aims are to develop understanding of the processes governing flood generation and the associated impacts of land management practices, and to bridge the gap between process understanding and ability to predict effects on downstream flooding. To achieve this, the experiment is designed to operate at plot (~100 m2), hillslope (~0·1 km2) and small catchment scale (~10 km2). Hillslope‐scale data, from an under‐drained, agriculturally ‘improved’ pasture, show that drain flow is a dominant runoff process. However, depending on antecedent moisture conditions, overland flow may exceed drain flow rates and can be an important contributor to peak flow runoff at the hillslope‐scale. Flow, soil tension data and tracer tests confirm the importance of macropores and presence of perched water tables under ‘normal’ wet conditions. Comparisons of pasture runoff with that from within a 10 year‐old tree shelterbelt show significantly reduced overland flow due to the presence of trees and/or absence of sheep. Comparisons of soil hydraulic properties show significant increases in hydraulic conductivity and saturated moisture content of soil under trees compared to adjacent improved pasture. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The dynamics of natural pipe hydrological behaviour in blanket peat   总被引:1,自引:0,他引:1  
Natural soil pipes are found in peatlands, but little is known about their hydrological role. This paper presents the most complete set of pipe discharge data to date from a deep blanket peatland in Northern England. In a 17.4‐ha catchment, we identified 24 perennially flowing and 60 ephemerally flowing pipe outlets. Eight pipe outlets along with the catchment outlet were continuously gauged over an 18‐month period. The pipes in the catchment were estimated to produce around 13.7% of annual streamflow, with individual pipes often producing large peak flows (maximum peak of 3.8 l s?1). Almost all pipes, whether ephemerally or perennially flowing, shallow or deep (outlets > 1 m below the peat surface), showed increased discharge within a mean of 3 h after rainfall commencement and were dominated by stormflow, indicating good connectivity between the peatland surface and the pipes. However, almost all pipes had a longer period between the hydrograph peak and the return to base flow compared with the stream (mean of 23.9 h for pipes, 19.7 h for stream). As a result, the proportion of streamflow produced by the pipes at any given time increased at low flows and formed the most important component of stream discharge for the lowest 10% of flows. Thus, a small number of perennially flowing pipes became more important to the stream system under low‐flow conditions and probably received water via matrix flow during periods between storms. Given the importance of pipes to streamflow in blanket peatlands, further research is required into their wider role in influencing stream water chemistry, water temperature and fluvial carbon fluxes, as well as their role in altering local hydrochemical cycling within the peat mass itself. Enhanced piping within peatlands caused by environmental change may lead to changes in the streamflow regime with larger low flows and more prolonged drainage of the peat. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Lu Zhuo  Qiang Dai  Dawei Han 《水文研究》2015,29(11):2463-2477
Hydrological models play a significant role in modelling river flow for decision making support in water resource management. In the past decades, many researchers have made a great deal of efforts in calibrating and validating various models, with each study being focused on one or two models. As a result, there is a lack of comparative analysis on the performance of those models to guide hydrologists to choose appropriate models for the individual climate and physical conditions. This paper describes a two‐level meta‐analysis to develop a matching system between catchment complexity (based on catchment significant features (CSFs)) and model types. The intention is to use the available CSF information for choosing the most suitable model type for a given catchment. In this study, the CSFs include the elements of climate, soil type, land cover and catchment scale. Specific choices of model types in small and medium catchments are further explored with all CSF information obtained. In particular, it is interesting to find that semi‐distributed models are the most suitable model type for catchments with the area over 3000 km2, regardless of other CSFs. The potential methodology for expanding the matching system between catchment complexity and model complexity is discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this study was to test the practicability of defining hydrologic response units as combinations of soil, land use and topography for modelling infiltration at the hillslope and catchment scales. In an experimental catchment in the East African Highlands (Kwalei, Tanzania), three methods of measuring infiltration were compared for their ability to capture the spatial variability of effective hydraulic conductivity: the constant head (CH) method; the tension infiltration (TI) method; and the mini‐rainfall simulation (RS) method. The three methods yielded different probability distributions of effective hydraulic conductivity and suggested different types of hydrologic response units. Independently from these measurements, the occurrence of infiltration‐excess overland flow was monitored over an area of 6 ha by means of overland flow detectors. The observed pattern of overland flow occurrence did not match any of the patterns suggested by the infiltration measurements. Instead, clusters of spots with overland flow were practically independent from field borders. Geostatistical analysis of the overland flow confirmed the absence of spatial correlation for distances over 40 m. The RS method yielded the pattern closest to the observations, probably because the method simulated better the processes that trigger infiltration‐excess overland flow, i.e. soil sealing and infiltration through macroporosity. The RS hydrologic response unit correlated significantly with observed overland flow frequency. However, the location of clusters and ‘hot spots’ of overland flow remained largely unexplained by land use, soil and topographic variables. It is concluded that using such landscape variables to define hydrologic units may create artificial boundaries that do no correspond to physical realities, especially if the stochastic component within hydrologic units is neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A method to improve the calculation of overland flow in distributed groundwater recharge models is presented and applied to two sub‐catchments in the Thames Basin, UK. Recharge calculation studies tend to simulate the runoff flow component of river flow in a simplistic way, often as a fraction of rainfall over a particular period. The method outlined in this study intends to improve the calculation of groundwater recharge estimates in distributed recharge models but does not present an alternative to complex overland flow simulators. This method uses seasonally varying coefficients to calculate runoff for specified hydrogeological classes or runoff zones, which are used to model baseflow index variations across the basin. It employs a transfer function model to represent catchment storage. Monte Carlo simulation was applied to refine the runoff values. Decoupling the runoff zones between the two sub‐catchments produces a better match between the simulated and observed values; however, the difference between observed runoff and the simulated output indicates other factors, such as landuse and topographical characteristics that affect the generation of runoff flow, need to be taken into account when classifying runoff zones. British Geological Survey © NERC 2011. Hydrological Processes © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号