首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The importance of riparian tree cover in reducing energy inputs to streams is increasingly recognized in schemes to mitigate climate change effects and protect freshwater ecosystems. Assessing different riparian management strategies requires catchment‐scale understanding of how different planting scenarios would affect the stream energy balance, coupled with a quantitative assessment of spatial patterns of streamflow generation. Here, we use the physically based MIKE SHE model to integrate simulations of catchment‐scale run‐off generation and in‐stream hydraulics with a heat transfer model. This was calibrated to model the spatio‐temporal distribution of hourly stream water temperature during warm low flow periods in a Scottish salmon stream. The model was explored as a “proof of concept” for a tool to investigate the effects of riparian management on high stream water temperatures that could affect juvenile Atlantic salmon. Uncertainty was incorporated into the assessment using the generalized likelihood uncertainty estimation approach. Results showed that by decreasing both the warming (daylight hours) and the cooling (night‐time hours) rates, forest cover leads to a reduction of the temperature range (with a delay of the time to peak by up to 2 hr) and can therefore be effectively used to moderate projected climate change effects. The modelling presented here facilitated the quantification of potential mitigating effects of alternative riparian management strategies and provided a valuable tool that has potential to be utilized as an evidence base for catchment management guidance.  相似文献   

2.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Semi-arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape-scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)-Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud-based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data-based calibrations to vegetation structure (leaf-area index, LAI), and open-source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach-scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach-scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent-flow stream reaches. At perennial-flow reaches, ET correlated significantly with temperature, whilst at intermittent-flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water-use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.  相似文献   

4.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Climate change is expected to alter temperatures and precipitation patterns, affecting river flows and hence riparian corridors. In this context we have explored the potential evolution of riparian corridors under a dryness gradient of flow regimes associated with climate change in a Mediterranean river. We have applied an advanced bio‐hydromorphodynamic model incorporating interactions between hydro‐morphodynamics and vegetation. Five scenarios, representing drier conditions and more extreme events, and an additional reference scenario without climate change, have been designed and extended until the year 2100. The vegetation model assesses colonization, growth and mortality of Salicaceae species. We analysed the lower course of the Curueño River, a free flowing gravel bed river (NW Spain), as a representative case study of the Mediterranean region. Modelling results reveal that climate change will affect both channel morphology and riparian vegetation in terms of cover, age distribution and mortality. Reciprocal interactions between flow conditions and riparian species as bio‐engineers are predicted to promote channel narrowing, which becomes more pronounced as dryness increases. Reductions in seedling cover and increases in sapling and mature forest cover are predicted for all climate change scenarios compared with the reference scenario, and the suitable area for vegetation development declines and shifts towards lower floodplain elevations. Climate change also leads to younger vegetation becoming more subject to uprooting and flooding. The predicted reduction in suitable establishment areas and the narrowing of vegetated belts threatens the persistence of the current riparian community. This study highlights the usefulness of advanced bio‐hydromorphodynamic modelling for assessing climate change effects on fluvial landscapes. It also illustrates the need to consider climate change in river management to identify appropriate adaptation measures for riparian ecosystems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high-elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high-elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.  相似文献   

7.
Many efforts to model stream temperature by using an energy budget approach have not accounted for view factors in modelling stream surface radiative exchanges, used informal approaches for computing them, or relied on calibration, which is not applicable for prediction at unmonitored sites or for predicting the effects of changes in riparian vegetation. In this paper, equations are derived for calculating view factors on the basis of geometric considerations for streams with and without riparian forest. The solutions can accommodate vegetation overhanging the stream surface. Example calculations illustrate the substantial variability of view factors across the stream width, which has implications for the estimation of view factors from point‐scale radiation measurements over the stream surface, and the important influence of overhanging vegetation on view factors for narrow streams. View factors computed from the geometric model agreed well with view factors computed from hemispherical photography for streams ranging from 1 to almost 50 m wide, indicating that the model appears to be reasonably robust to deviations from the simplified geometry assumed by the model. In addition to their use in modelling stream surface energy exchanges, the solutions could also be adapted for application to energy balance and microclimate modelling in linear forest openings, such as seismic lines used in oil and gas exploration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

9.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Temperature observations at 25 sites in the 2000 km2 Dee catchment in NE Scotland were used, in conjunction with geographic information system (GIS) analysis, to identify dominant landscape controls on mean monthly maximum stream temperatures. Maximum winter stream temperatures are mainly controlled by elevation, catchment area and hill shading, whereas the maximum temperatures in summer are driven by more complex interactions, which include the influence of riparian forest cover and distance to coast. Multiple linear regression was used to estimate the catchment‐wide distribution of mean weekly maximum stream temperatures for the hottest week of the 2‐year observation period. The results suggested the streams most sensitive to high temperatures are small upland streams at exposed locations without any forest cover and relatively far inland, while lowland streams with riparian forest cover at locations closer to the coast exhibit a moderated thermal regime. Under current conditions, all streams provide a suitable thermal habitat for both, Atlantic salmon and brown trout. Using two climate change scenarios assuming 2·5 and 4 °C air temperature increases, respectively, temperature‐sensitive zones of the stream network were identified, which could potentially have an adverse effect on the thermal habitat of Atlantic salmon and brown trout. Analysis showed that the extension of riparian forests into headwater streams has the potential to moderate changes in temperature under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Stream temperature is an important control of many in-stream processes. There is rising concern about increases in stream temperature with projected climate changes and human-related water activities. Here, we investigate the responses to climate change and water diversions in Eel River basin. The increase in stream temperatures is considered to be the result of changes in air temperature, the proportion of base flow and the amount of stream flow derived from historical and future simulations using the integrated VIC hydrologic model and ANN stream temperature model. The results show that stream temperature will increase throughout the basin in the future under two climate change representative concentration pathways (RCPs 4.5 and 8.5) and will also be influenced by the water diversion activities schedules. Specifically, the stream temperature increases, in the late twenty-first century under RCP8.5 scenarios, from 1.20 to 2.40 °C in summer and from 0.58–3.46 °C in winter respectively; Water diversion activities in Eel River Basin can increase nearly 1 °C in stream temperature. Therefore, both climate change and water diversion activities can substantially cause the rise of more than 2 °C in stream temperature. In conclusion, stream temperature is mainly sensitive to the proportion of base flow in summer, but also the change of the amount of stream flow in winter in our case study area. In addition, it should be noted that the low intensity irrigation schedule has lower impacts on increasing stream temperature, whereas the high intensity irrigation schedule will further exacerbate the rise of stream temperature. Understanding the different impacts of climate change scenarios and irrigation schedules on stream temperature can help identify climate-sensitive regions, climate-sensitive seasons and water diversion schedules as well as assist in planning for climate change and social adaptive management.  相似文献   

13.
Riparian land use is a key driver of stream ecosystem processes but its effects on water quality are still a matter of debate when proposing measures to improve freshwater quality. The aim of this study was to examine the influence of riparian land use on stream habitat and water chemistry, and to assess in what extent stream habitat also affects water quality. To that end, we selected eight reaches in the Ave River basin (northwestern Portugal) and compared longitudinal variations in water chemistry and stream habitat between reaches with different land use (urban, agricultural and natural), and between reaches with natural riparian areas and different habitats. Stream habitat was assessed using the Fluvial Functional Index, the HABSCORE, and the Riparian Forest Quality Index. Longitudinal variations in water chemistry were determined measuring differences in concentrations of ammonium, nitrate, phosphate and oxygen, and conductivity, pH and temperature between the downstream and the upstream ends of each reach. Nitrate concentration tended to decrease along reaches with more natural riparian areas and to increase along reaches with more urban and agricultural land uses. Longitudinal variations in water chemistry also differed between reaches with natural riparian areas, suggesting that water quality also depends on stream habitat. Moreover, longitudinal variation in water chemistry was proven a simple, useful and low-cost approach to assess the influence of land cover and stream habitat on water quality. Overall results demonstrated that both riparian land use and stream habitat influence water quality and that riparian forests are essential to reduce nutrient export to downstream ecosystems.  相似文献   

14.
Stream temperature is a critical water quality parameter that is not fully understood, particularly in urban areas. This study explores drivers contributing to stream temperature variability within an urban system, at 21 sites within the Philadelphia region, Pennsylvania, USA. A comprehensive set of temperature metrics were evaluated, including temperature sensitivity, daily maximum temperatures, time >20°C, and temperature surges during storms. Wastewater treatment plants (WWTPs) were the strongest driver of downstream temperature variability along 32 km in Wissahickon Creek. WWTP effluent temperature controlled local (1–3 km downstream) temperatures year-round, but the impacts varied seasonally: during winter, local warming of 2–7°C was consistently observed, while local cooling up to 1°C occurred during summer. Summer cooling and winter warming were detected up to 12 km downstream of a WWTP. Comparing effects from different WWTPs provided guidelines for mitigating their thermal impact; WWTPs that discharged into larger streams, had cooler effluent, or had lower discharge had less effect on stream temperatures. Comparing thermal regimes in four urban headwater streams, sites with more local riparian canopy had cooler maximum temperatures by up to 1.5°C, had lower temperature sensitivity, and spent less time at high temperatures, although mean temperatures were unaffected. Watershed-scale impervious area was associated with increased surge frequency and magnitude at headwater sites, but most storms did not result in a surge and most surges had a low magnitude. These results suggest that maintaining or restoring riparian canopy in urban settings will have a larger impact on stream temperatures than stormwater management that treats impervious area. Mitigation efforts may be most impactful at urban headwater sites, which are particularly vulnerable to stream temperature disruptions. It is vital that stream temperature impacts are considered when planning stormwater management or stream restoration projects, and the appropriate metrics need to be considered when assessing impacts.  相似文献   

15.
Evaporation can be an important control on stream temperature, particularly in summer when it acts to limit daily maximum stream temperature. Evaporation from streams is usually modelled with the use of a wind function that includes empirically derived coefficients. A small number of studies derived wind functions for individual streams; the fitted parameters varied substantially among sites. In this study, stream evaporation and above-stream meteorological conditions (at 0.5 and 1.5 m above the water surface) were measured at nine mountain streams in southwestern British Columbia, Canada, covering a range of stream widths, temperatures, and riparian vegetation. Evaporation was measured on 20 site-days in total, at approximately hourly intervals, using nine floating evaporation pans distributed across the channels. The wind function was fit using mixed-effects models to account for among-stream variability in the parameters. The fixed-effects parameters were tested using leave-one-site-out cross-validation. The model based on 0.5 m measurements provided improved model performance compared to that based on 1.5 m values, with RMSE of 0.0162 and 0.0187 mm h−1, respectively, relative to a mean evaporation rate of 0.06 mm h−1. Inclusion of atmospheric stability and canopy openness as predictors improved model performance when using the 1.5 m meteorological measurements, with minimal improvement when based on 0.5 m measurements. Of the wind functions reported in the literature, two performed reasonably while five others exhibited substantial bias.  相似文献   

16.
Increasing river temperatures are a threat to cold water species including ecologically and economically important freshwater fish, such as Atlantic salmon. In 2018, ca. 70% of Scottish rivers experienced temperatures which cause thermal stress in juvenile salmon, a situation expected to become increasingly common under climate change. Management of riparian woodlands is proven to protect cold water habitats. However, creation of new riparian woodlands can be costly and logistically challenging. It is therefore important that planting can be prioritized to areas where it is most needed and can be most effective in reducing river temperatures. The effects of riparian woodland on channel shading depend on complex interactions between channel width, orientation, aspect, gradient, tree height and solar geometry. Subsequent effects on river temperature are influenced by water volume and residence time. This study developed a deterministic river temperature model, driven by energy gains from solar radiation that are modified by water volume and residence time. The resulting output is a planting prioritization metric that compares potential warming between scenarios with and without riparian woodland. The prioritization metric has a reach scale spatial resolution, but can be mapped at large spatial scales using information obtained from a digital river network. The results indicate that water volume and residence time, as represented by river order, are a dominant control on the effectiveness of riparian woodland in reducing river temperature. Ignoring these effects could result in a sub-optimal prioritization process and inappropriate resource allocation. Within river order, effectiveness of riparian shading depends on interactions between channel and landscape characteristics. Given the complexity and interacting nature of controls, the use of simple universal planting criteria is not appropriate. Instead, managers should be provided with maps that translate complex models into readily useable tools to prioritize riparian tree planting to mitigate the impacts of high river temperatures.  相似文献   

17.
Transpiration is an important component of soil water storage and stream‐flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro‐Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0·32 and 0·29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200–1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800–2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150–2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600–4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of morphological interventions, since riparian vegetation is influenced by and influences the river dynamics. Morphodynamic models, useful tools for project planning, should therefore include the interaction between vegetation, water flow and sediment processes. Most restoration projects are carried out in USA and Europe, where rivers are highly intervened and where the climate is temperate and vegetation shows a clear seasonal cycle. Taking into account seasonal variations might therefore be relevant for the prediction of the river morphological adaptation. This study investigates the morphodynamic effects of riparian vegetation on a re‐meandered lowland stream in the Netherlands, the Lunterse Beek. The work includes the analysis of field data covering 5 years and numerical modelling. The results allow assessment of the performance of a modelling tool in predicting the morphological evolution of the stream and the relevance of including the seasonal variations of vegetation in the computations. After the establishment of herbaceous plants on its banks, the Lunterse Beek did not show any further changes in channel alignment. This is here attributed to the stabilizing effects of plant roots together with the small size of the stream. It is expected that the morphological restoration of similarly small streams may result in important initial morphological adaptation followed by negligible changes after full vegetation establishment. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local‐scale and watershed‐scale factors on summer temperatures in urban streams, hundreds of near‐instantaneous temperature measurements throughout the central Puget Lowland, western Washington State, were collected during a single 2‐h period in August in each of the years 1998–2001. Stream temperatures ranged from 8.9 to 27.5 °C, averaging 15.4 °C. Pairwise correlation coefficients between stream temperature and four watershed variables (total watershed area and the watershed percentages of urban development, upstream lakes, and permeable glacial outwash soils as an indicator of groundwater exchange) were uniformly very low. Akaike's information criterion was applied to determine the best‐supported sets of watershed‐scale predictor variables for explaining the variability of stream temperatures. For the full four‐year dataset, the only well‐supported model was the global model (using all watershed variables); for the most voluminous single‐year (1999) data, Akaike's information criterion showed greatest support for per cent outwash (Akaike weight of 0.44), followed closely by per cent urban development + per cent outwash, per cent lake area only, and the global model. Upstream lakes resulted in downstream warming of up to 3 °C; variability in riparian shading imposed a similar temperature range. Watershed urbanization itself is not the most important determining factor for summer temperatures in this region; even the long‐recognized effects of riparian shading can be no more influential than those imposed by other local‐scale and watershed‐scale factors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The potential for increased loads of dissolved organic carbon (DOC) in streams and rivers is a concern for regulating the water quality in water supply watersheds. With increasing hydroclimatic variability related to global warming and shifts in forest ecosystem community and structure, understanding and predicting the magnitude and variability of watershed supply and transport of DOC over multiple time scales have become important research and management goals. In this study, we use a distributed process‐based ecohydrological model (Regional Hydro‐Ecological Simulation System [RHESSys]) to explore controls and predict streamflow DOC loads in Biscuit Brook. Biscuit Brook is a forested headwater catchment of the Neversink Reservoir, part of the New York City water supply system in the Catskill Mountains. Three different model structures of RHESSys were proposed to explore and evaluate hypotheses addressing how vegetation phenology and hydrologic connectivity between deep groundwater and riparian zones influence streamflow and DOC loads. Model results showed that incorporating dynamic phenology improved model agreement with measured streamflow in spring, summer, and fall and fall DOC concentration, compared with a static phenology. Additionally, the connectivity of deep groundwater flux through riparian zones with dynamic phenology improved streamflow and DOC flux in low flow conditions. Therefore, this study suggests the importance of inter‐annual vegetation phenology and the connectivity of deep groundwater drainage through riparian zones in the hydrology and stream DOC loading in this forested watershed and the ability of process‐based ecohydrological models to simulate these dynamics. The advantage of a process‐based modelling approach is specifically seen in the sensitivity to forest ecosystem dynamics and the interactions of hydroclimate variability with ecosystem processes controlling the supply and distribution of DOC. These models will be useful to evaluate different forest management approaches toward mitigating water quality concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号