首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.

  相似文献   

2.
Well Yingnan 2,an important exploratory well in the east of Tarim Basin,yields high commercial oil and gas flow in Jurassic.Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas.Because this region presents many suits of hydrocarbon source rocks,there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present.By using the kinetics of hydrocarbon generation and carbon isotope,natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas,about 72%,it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir.The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2,so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

3.
Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series. At present, about 2 billions tons of proved, probable and possible oil and gas reverses have been proved there. Eight oil and gas bearing series have been found in the Ordovician, Carboniferous, Triassic and Jurassic of Lunnan region, they all bear the characteristics of large-scale multilayer oil-gas province. Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered, and a super large-scale marine carbonate oil and gas field has formed. Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole, dissolved pore and fracture in Lunnan paleo-burial hill. Generally, dissolved holes are widely distributed among them. Reservoir developments are mainly controlled by karstification and tectonic disruption. Due to the similar geochemical characters, the Ordovician, Carboniferous, Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician, the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement, adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions, ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once. Hereby, the succeed paleohigh is the long-term hydrocarbon accumulation region, which is favor for the formations of high quality reservors, fault systems and huge-scale composite oil and gas accumulation.  相似文献   

4.

Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series. At present, about 2 billions tons of proved, probable and possible oil and gas reverses have been proved there. Eight oil and gas bearing series have been found in the Ordovician, Carboniferous, Triassic and Jurassic of Lunnan region, they all bear the characteristics of large-scale multilayer oil-gas province. Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered, and a super large-scale marine carbonate oil and gas field has formed. Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole, dissolved pore and fracture in Lunnan paleo-burial hill. Generally, dissolved holes are widely distributed among them. Reservoir developments are mainly controlled by karstification and tectonic disruption. Due to the similar geochemical characters, the Ordovician, Carboniferous, Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician, the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement, adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions, ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once. Hereby, the succeed paleohigh is the long-term hydrocarbon accumulation region, which is favor for the formations of high quality reservors, fault systems and huge-scale composite oil and gas accumulation.

  相似文献   

5.
Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series.At present, about 2 billions tons of proved,probable and possible oil and gas reverses have been proved there.Eight oil and gas bearing series have been found in the Ordovician,Carboniferous,Triassic and Jurassic of Lunnan region,they all bear the characteristics of large-scale multilayer oil-gas province.Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered,and a super large-scale marine carbonate oil and gas field has formed.Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole,dissolved pore and fracture in Lunnan paleo-burial hill.Generally, dissolved holes are widely distributed among them.Reservoir developments are mainly controlled by karstification and tectonic disruption.Due to the similar geochemical characters,the Ordovician,Carboniferous,Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician,the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement,adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions,ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once.Hereby,the succeed paleohigh is the long-term hydrocarbon accumulation region,which is favor for the formations of high quality reservoirs,fault systems and huge-scale composite oil and gas accumulation.  相似文献   

6.
Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells YM 2 and TD 2 was derived from the Middle-Upper Ordovician and Cambrian source rocks, respectively. We analyzed the biomarkers of the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions from the Lunnan and Hade areas in the North Uplift of the Tarim Basin. Results show that the ratios of tricyclic terpane C21/C23 in the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions are less than 1.0, indicating that they might be from Upper Ordovician source rocks; the ratios of C28/(C27+C28+C29) steranes in the saturated hydrocarbon from reservoir bitumen and bitumen inclusions are higher than 25, suggesting that they might come from the Cambrian source rocks, however, the ratios of C28/(C27+C28+C29) steranes in oil from the North Uplift are less than 25, suggesting that they might be sourced from the Upper Ordovician source rocks. These findings demonstrate that the sources of crude oil in the Tarim Basin are complicated. The chemical composition and carbon isotopes of Ordovician reservoired oil in the Tarim Basin indicated that the crude oil in the North Uplift (including the Tahe oilfield) and Tazhong Depression was within mixture areas of crude oil from the Wells YM 2 and TD 2 as the end members of the Cambrian and Middle-Upper Ordovician sourced oils, respectively. This observation suggests that the crude oil in the Ordovician strata is a mixture of oils from the Cambrian and Ordovician source rocks, with increasing contribution from the Cambrian source rocks from the southern slope of the North Uplift to northern slope of the Central Uplift of the Tarim Basin. Considering the lithology and sedimentary facies data, the spatial distribution of the Cambrian, Middle-Lower Ordovician and Upper Ordovician source rocks was reconstructed on the basis of seismic reflection characteristics, and high-quality source rocks were revealed to be mainly located in the slope belt of the basin and were longitudinally developed over the maximum flooding surface during the progressive-regressive cycle. Affected by the transformation of the tectonic framework in the basin, the overlays of source rocks in different regions are different and the distribution of oil and gas was determined by the initial basin sedimentary structure and later reformation process. The northern slope of the Central Uplift-Shuntuo-Gucheng areas would be a recent important target for oil and gas exploration, since they have been near the slope area for a long time.  相似文献   

7.
Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.  相似文献   

8.
Taking the hydrocarbon source rocks of Ordovician, Lower Paleozoic in the Ordos Basin as the main research object, the characteristics of petroleum geological dynamics about geohistory, geothermal history, hydrocarbon generation history and hydrocarbon expulsion history were studied by using the methods of basin numerical modeling dynamically and pool-forming dynamics. It is shown that the Ordovician strata had entirely undergone five stages of initial deposition, uplift and erosion, rapid subsidence, alternating uplift and subsidence, and differential uplift and erosion; that under the background of lower heat flow on the whole, the paleoheat flow of Ordovician strata in the basin could be divided into two large stages of relatively high heat flow values period before Cretaceous deposition and relatively low ones after it; that the thermal evolution of organic matters in the hydrocarbon source rocks of Ordovician had entered into high mature-postmature stage on the whole and the intensity of gas generated was greater than that of oil generated, the hydrocarbon being mainly natural gas; and that the curves of the intensity of oil and gas expulsion at each time unit showed the feature of multi-peak-type, the accumulative intensity of gas expulsion was greater than that of oil expulsion. Thus natural gas exploration potential is good.  相似文献   

9.
Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins.At present,shallow gas resources have opened up giant potentials.The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil.Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism,it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas.Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs.They are mainly of dry gas,which are composed of methane and only tiny C2 heavy hydrocarbon and relatively higher contents of nitrogen gas.Generally,methane isotopes are light,whose values are between biogenic gas and thermal cracking gas.Ethane isotopes are heavy,which mixed possibly with thermogenic gas.Carbon dioxide bear the characteristics of very heavy carbon isotope,so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil.The heavy oil degraded gas formation,a very complex geological,geochemical and microbiological geochemical process,is the result of a series of reactions of organic matter-microbes and water-hydrocarbon,which is controlled by many factors.  相似文献   

10.
Wang  ZhenQi  Zhi  DongMing  Zhang  ChangMin  Xue  XinKe  Zhang  ShangFeng  Li  TianMing  Yang  Fei  Liu  LouJun  Cheng  Liang  Lu  Dong  Zhou  FengJuan  Chen  YuanYong 《中国科学:地球科学(英文版)》2010,52(1):106-114

Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.

  相似文献   

11.
Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil. Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism, it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas. Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs. They are mainly of dry gas, which are composed of methane and only tiny C 2 + heavy hydrocarbon and relatively higher contents of nitrogen gas. Generally, methane isotopes are light, whose values are between biogenic gas and thermal cracking gas. Ethane isotopes are heavy, which mixed possibly with thermogenic gas. Carbon dioxide bear the characteristics of very heavy carbon isotope, so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil. The heavy oil degraded gas formation, a very complex geological, geochemical and microbiological geochemical process, is the result of a series of reactions of organic matter-microbes and water-hydrocarbon, which is controlled by many factors.  相似文献   

12.
China sedimentary basins present abundant natural gas resource thanks to its unique geological settings.Marine highly-matured hydrocarbon source rocks,widespread coal-measure strata and low temperature Quaternary saline strata,etc.,indicate the wide foreground of China natural gas resources. Up to now,most of the petroliferous basins have been discovered to have wholesale natural gas accumulation from Precambrian,Paleozoic,Mesozoic to Cenozoic in the east,the central,the west and the coast of China.These large and medium-scale gas reservoirs are mainly composed of hydrocarbon gas with big dry coefficient,tiny non-hydrocarbon,wide carbon isotope distribution and varying origin types,the hydrocarbon gas includes coal-formed gas,oil-formed gas,biogenic gas and inorganic gas, etc.Coal-formed gas is the main type of China natural gas resources,in particular several explored large-scale gas fields(>100 billion cubic meter)of Kela 2,Sulige and Daniudi,etc.,they all belong to coal-formed gas fields or the gas fields consisting mostly of coal-formed gas.Oil-formed gas is also abundant in China marine basins,for example marine natural gas of Sichuan Basin generated from crude oil cracking gas.Primary and secondary biogenic gas fields were discovered respectively in the Qaidam Basin and Western Slope of Songliao Basin.In addition,inorganic gases are mainly distributed in the eastern China,in particular the Songliao Basin with abundant carbon dioxide accumulation,indicating that the eastern China present large exploration potential of inorganic gas.  相似文献   

13.

Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil. Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism, it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas. Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs. They are mainly of dry gas, which are composed of methane and only tiny C +2 heavy hydrocarbon and relatively higher contents of nitrogen gas. Generally, methane isotopes are light, whose values are between biogenic gas and thermal cracking gas. Ethane isotopes are heavy, which mixed possibly with thermogenic gas. Carbon dioxide bear the characteristics of very heavy carbon isotope, so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil. The heavy oil degraded gas formation, a very complex geological, geochemical and microbiological geochemical process, is the result of a series of reactions of organic matter-microbes and water-hydrocarbon, which is controlled by many factors.

  相似文献   

14.
There are mainly 3 kinds of existing states of oil generating from source rocks, that is, dispersive liquid hydrocarbon inside of source rock, dispersive liquid hydrocarbon outside of source rock and concentrated liquid hydrocarbon outside of source rock. Because of the differences in thermal history and medium conditions around, and the interaction of organic and inorganic matter, the liquid hydrocarbon with 3 kinds of existing state has different cracking conditions. The gas generation dynamics experiments of crude oil matching different mediums indicate that the distribution of activation energy of methane changes a lot according to medium difference. The carbonate has a main influence on oil cracking conditions and can largely reduce its activation energy, which reflects the lower cracking temperature of crude oil. The mudstone takes a second place and the sandstone is the smallest. The catalytic cracking function to the oil of the carbonate, of the mudstone and of the sandstone changes weaken in turn. The corresponding R o values of main gas generation period in different mediums are as follows: 1.5%–3.8% with pure crude oil, 1.2%–3.2% with dispersive crude oil in carbonate, 1.3%~3.4% with dispersive crude oil in mudstone and 1.4%–3.6% with dispersive crude oil in sandstone. The influence of pressure to crude oil cracking is relatively complicated. In the low heating speed condition, pressure restrains the oil cracking and gas generation, but in the high heating speed condition, pressure has an indistinctive influence to the oil cracking and gas generation. Pressure also makes a different effort in different evolvement stage. Taking the middle and lower Cambrian source rocks in the Tarim Basin as an example, primary oil generating quantity is 2232.24×108t, residual oil and oil cracking gas quantity is 806.21×108t and 106.95×1012m3 respectively.  相似文献   

15.
Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.  相似文献   

16.

There exists a petroleum system rich of oil and gas around Halahatang depression, where the oil and gas possess obvious local distinctions of properties in different parts. The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock, and the differences of its properties were controlled by the oil and gas filling intensity. The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases: late Caledonian-Early Hercynian epoch, late Hercynian epoch, and Yanshan-Himalayan epoch. In the first phase, the oil and gas derived mostly from Cambrian source rock, which formed the primary ancient oil reservoirs, then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present. In the second phase, the O2+3 source rock of Manjia’er depression started its generation of hydrocarbon, which accumulated in the high position of Tabei up-lift afterwards, and then biodegradated to heavy oil in the late Hercynian epoch. In the last phase, the O2+3 source rock of southern Halahatang depression and margin of Manjia’er depression started its peak of generating liquid hydrocarbon, which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch, and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading, to lead to obvious crude oil divergence.

  相似文献   

17.
There exists a petroleum system rich of oil and gas around Halahatang depression, where the oil and gas possess obvious local distinctions of properties in different parts. The research proved that the discovered crude oil and natural gas in the region derived mainly from O2+3 source rock, and the differences of its properties were controlled by the oil and gas filling intensity. The comprehensive study result shows the oil and gas reservoirs of the region mainly underwent three important accumulation phases: late Caledonian-Early Hercynian epoch, late Hercynian epoch, and Yanshan-Himalayan epoch. In the first phase, the oil and gas derived mostly from Cambrian source rock, which formed the primary ancient oil reservoirs, then suffered strong degradation and remained a great quantity of pyrobitumen in the high position of Tabei uplift in the present. In the second phase, the O2+3 source rock of Manjia’er depression started its generation of hydrocarbon, which accumulated in the high position of Tabei up-lift afterwards, and then biodegradated to heavy oil in the late Hercynian epoch. In the last phase, the O2+3 source rock of southern Halahatang depression and margin of Manjia’er depression started its peak of generating liquid hydrocarbon, which mostly accumulated in the trap formed before the Indo-China and Yanshan epoch, and in somewhere the heavy oil suffered dilutions in various degrees or serious gas invading, to lead to obvious crude oil divergence.  相似文献   

18.
As a relatively stable craton block in the earth system, the petroliferous basin is influenced by the evolution of the earth system from the early development environment of source rocks, hydrocarbon formation, and reservoir dissolution to hydrocarbon accumulation or destruction. As a link between the internal and external factors of the basin, deep fluids run through the whole process of hydrocarbon formation and accumulation through organic-inorganic interaction. The nutrients carried by deep fluids promote the bloom of hydrocarbon-generating organisms and extra addition of carbon and hydrogen source, which are beneficial to the development of high-quality source rock and enhancement of the hydrocarbon generation potential. The energy carried by the deep fluid promotes the early maturation of the source rock and facilitates the hydrocarbon generation by activation and hydrogenation in high-mature hydrocarbon sources. The dissolution alteration of carbonate rocks and clastic reservoirs by CO_2-rich deep fluids improves the deep reservoir space, thus extending the oil and gas reservoir space into greater depth. The extraction of deeply retained crude oil by deep supercritical CO_2 and the displacement of CH_4 in shale have both improved the hydrocarbon fluidity in deep and tight reservoirs. Simultaneously, the energy and material carried by deep fluids(C, H, and catalytic substances) not only induce inorganic CH_4 formation by Fischer-Tropsch(F-T) synthesis and "hydrothermal petroleum" generation from organic matter by thermal activity but also cause the hydrothermal alteration of crude oil from organic sources. Therefore, from the perspective of the interaction of the earth's sphere, deep fluids not only input a significant amount of exogenous C and H into sedimentary basins but also improve the reservoir space for oil and gas, as well as their enrichment and accumulation efficiencies.  相似文献   

19.
There are natural gas sources of various modes of occurrence in superimposed basins. Besides the conventional kerogen and ancient oil reservoir, dispersed soluble organic matter (DSOM) is an important direct gas source. Because of its wide distribution, great potential to generate gas and proneness to crack under catalysis, DSOM is an important type of gas source in the highly evolved zones in marine strata. Through the geological and geochemical analysis that reflects the long-period evolvement and multipl...  相似文献   

20.
Organic-inorganic interaction exists universally and is important in the process of mineral resources formation.It is the essential reason why organic oil,gas,coal and inorganic uranium coexist,accumulate,and mineralize in the same sedimentary basins.Hydrocarbon-generating simulation experiment was conducted using low-mature hydrocarbon source rock containing kerogen type III with uranium(UO2CO3 solution)added to study the effects of uranium on the hydrocarbon generation of hydrocarbon source rocks.Experiment results show that uranium can enhance the yield of gas hydrocarbon,promote the total gas output,and increase the total hydrocarbon production(mass or volume).Uranium may lower the hydrocarbon generation threshold temperature and lead to the generation of liquid hydrocarbon in the relative low temperature of hydrocarbon source rock.Uranium can enhance the yield of saturated hydrocarbon,promote the low molecular weight hydrocarbons generating,and in turn increase the content of CH4 and the content of dry gas of the generated hydrocarbons.Uranium is one of the potential inorganic accelerating factors of the immature hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号