首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the simulation‐optimization approach, a coupled optimization and groundwater flow/transport model is used to solve groundwater management problems. The efficiency of the numerical method, which is used to simulate the groundwater flow, is one the major reason to obtain the best solution for a management problem. This study was carried out to examine the advantages of the analytic element method (AEM) in the simulation‐optimization approach, for the solution of groundwater management problems. For this study, the AEM and finite difference method (FDM) based flow models were developed and coupled with the particle swarm optimization (PSO)‐based optimization model. Furthermore, the AEM‐PSO and FDM‐PSO models developed were applied in hypothetical as well as real field conditions to address groundwater management problems and the results were compared. For the real field situation, the models developed were applied to the Dore River basin in France to minimize the installation and operational cost of new pumping wells taking the location and discharge of the pumping wells as decision variables. The constraints of the problem were identified with the help of stakeholders and water authority officials. The AEM flow model was developed to facilitate the management model particularly when at each iteration, the optimization model calls for a simulation model to calculate the values of groundwater heads. The results show that, at some points, the AEM‐PSO model is efficient in identifying the optimal location of wells and consequently results in optimal costs, sometimes difficult when using the FDM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper recommends the consideration of sensitivity, stability, risk, and irreversibility as objective functions in water resource management models within the framework of multiobjective analysis. Six major sources of uncertainties and errors in systems modeling are identified. They are associated with the following model characteristics: model structure (topology), model parameters, model scope or focus, data, optimization technique, and human subjectivity. In particular, the major objective of this paper is to set the stage for the development of an analytical and operational multiobjective framework which will provide decision-makers and plamers with alternatives that consider systems' sensitivity, responsivity, stability and irreversibility along with cost and other performance indices as multiple objectives. This type of a framework should have a very wide spectrum of applications in water and related land resources, environmental studies, energy, and others. The Surrogate Worth Trade-off method is proposed for the solution of the resulting multiobjective optimization problem.  相似文献   

3.
An extension of the Grey Fuzzy Waste Load Allocation Model (GFWLAM) developed in an earlier work is presented here to address the problem of multiple solutions. Formulation of GFWLAM is based on the approach for solving fuzzy multiple objective optimization problems with max–min as the operator, which usually may not result in a unique solution. The multiple solutions of fuzzy multiobjective optimization model should be obtained as parametric equations or equations that represent a subspace. A two-phase optimization technique, two-phase GFWLAM, is developed to capture all alternative or multiple solutions of GFWLAM. The optimization model in Phase 1 is exactly same as the optimization model described in GFWLAM. The optimization model in Phase 2 maximizes the upper bounds of fractional removal levels of pollutants and minimizes the lower bounds of fractional removal levels of pollutants keeping the value of goal fulfillment level same as obtained from Phase 1. The widths of the interval-valued fractional removal levels play an important role in decision-making as these can be adjusted within their intervals by the decision-maker considering technical and economic feasibility in the final decision scheme. Two-phase GFWLAM widens the widths of interval-valued removal levels of pollutants, thus enhancing the flexibility in decision-making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.  相似文献   

4.
Plume containment using pump-and-treat (PAT) technology continues to be a popular remediation technique for sites with extensive groundwater contamination. As such, optimization of PAT systems, where cost is minimized subject to various remediation constraints, is the focus of an important and growing body of research. While previous pump-and-treat optimization (PATO) studies have used discretized (finite element or finite difference) flow models, the present study examines the use of analytic element method (AEM) flow models. In a series of numerical experiments, two PATO problems adapted from the literature are optimized using a multi-algorithmic optimization software package coupled with an AEM flow model. The experiments apply several different optimization algorithms and explore the use of various pump-and-treat cost and constraint formulations. The results demonstrate that AEM models can be used to optimize the number, locations and pumping rates of wells in a pump-and-treat containment system. Furthermore, the results illustrate that a total outflux constraint placed along the plume boundary can be used to enforce plume containment. Such constraints are shown to be efficient and reliable alternatives to conventional particle tracking and gradient control techniques. Finally, the particle swarm optimization (PSO) technique is identified as an effective algorithm for solving pump-and-treat optimization problems. A parallel version of the PSO algorithm is shown to have linear speedup, suggesting that the algorithm is suitable for application to problems that are computationally demanding and involve large numbers of wells.  相似文献   

5.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Water quality management is a significant item in the sustainable development of wetland system, since the environmental influences from the economic development are becoming more and more obvious. In this study, an inexact left-hand-side chance-constrained fuzzy multi-objective programming (ILCFMOP) approach was proposed and applied to water quality management in a wetland system to analyze the tradeoffs among multiple objectives of total net benefit, water quality, water resource utilization and water treatment cost. The ILCFMOP integrates interval programming, left-hand-side chance-constrained programming, and fuzzy multi-objective programming within an optimization framework. It can both handle multiple objectives and quantify multiple uncertainties, including fuzziness (aspiration level of objectives), randomness (pollutant release limitation), and interval parameters (e.g. water resources, and wastewater treatment costs). A representative water pollution control case study in a wetland system is employed for demonstration. The optimal schemes were analyzed under scenarios at different probabilities (p i , denotes the admissible probability of violating the constraint i). The optimal solutions indicated that, most of the objectives would decrease with increasing probability levels from scenarios 1 to 3, since a higher constraint satisfaction probability would lead to stricter decision scopes. This study is the first application of the ILCFMOP model to water quality management in a wetland system, which indicates that it is applicable to other environmental problems under uncertainties.  相似文献   

7.
As competition for increasingly scarce ground water resources grows, many decision makers may come to rely upon rigorous multiobjective techniques to help identify appropriate and defensible policies, particularly when disparate stakeholder groups are involved. In this study, decision analysis was conducted on a public water supply wellfield to balance water supply needs with well vulnerability to contamination from a nearby ground water contaminant plume. With few alternative water sources, decision makers must balance the conflicting objectives of maximizing water supply volume from noncontaminated wells while minimizing their vulnerability to contamination from the plume. Artificial neural networks (ANNs) were developed with simulation data from a numerical ground water flow model developed for the study area. The ANN-derived state transition equations were embedded into a multiobjective optimization model, from which the Pareto frontier or trade-off curve between water supply and wellfield vulnerability was identified. Relative preference values and power factors were assigned to the three stakeholders, namely the company whose waste contaminated the aquifer, the community supplied by the wells, and the water utility company that owns and operates the wells. A compromise pumping policy that effectively balances the two conflicting objectives in accordance with the preferences of the three stakeholder groups was then identified using various distance-based methods.  相似文献   

8.
Abstract

Groundwater is an important water resource and its management is vital for integrated water resources development in semiarid catchments. The River Shiyang catchment in the semiarid area of northwestern China was studied to determine a sustainable multi-objective management plan of water resources. A multi-objective optimization model was developed which incorporated water supplies, groundwater quality, ecology, environment and economics on spatial and temporal scales under various detailed constraints. A calibrated groundwater flow model was supplemented by grey simulation of groundwater quality, thus providing two lines of evidence to use in the multi-objective water management. The response matrix method was used to link the groundwater simulation models and the optimization model. Multi-phase linear programming was used to minimize and compromise the objectives for the multi-period, conjunctive water use optimization model. Based on current water demands, this water use optimization management plan was able to meet ecological, environmental and economic objectives, but did not find a final solution to reduce the overall water deficit within the catchment.  相似文献   

9.
Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte–Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga–Bhadra river system in southern India, with a steady state BOD–DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality.  相似文献   

10.
A stochastic multiobjective optimization method for finding noninferior solutions of the operation problem of reservoirs in parallel is presented. This problem is characterized by a multiobjective optimization, a multireservoir system, and stochasticity of inflows, which represent three difficult aspects in reservoir system planning and operation. In this method, a constraint technique, decomposition iteration, and simulation analysis are employed conjunctively to deal with the three difficult aspects. The constraint technique is intended to transform the multiobjective optimization into a uniobjective one and the decomposition iteration in conjunction with the simulation analysis attempts to alleviate the dimensionality problem. The proposed methodology is applied to a reservoir system in the upper Tone River basin, which consists of three reservoirs in parallel and is operated primarily for three objectives: hydropower, water supply, and flood control. A total of 49 noninferior solutions for the reservoir system are obtained, from which the decision makers may be able to find the most satisfactory operating policy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

This paper considers the complexity in resolving the conflicts between mine drainage, water supply, and environmental protection for the coal basin of North China, and presents a management optimization framework that addresses these multiple conflicting issues simultaneously in the most cost effective manner. Due to the various unpredictable accidents which may occur in the coal mining process, such as water bursts, gas leaks, fire and collapse of coal beds, the beneficial use of drainage water from the coal mines is generally low. This case study attempts to address the problem of low beneficial usage for drainage water using the Jiaozuo coal mining district in Henan Province, China. By combining a finite-element groundwater simulation model with an optimization code, the economic benefits of using the drainage water as a stable water supply is maximized, while the adverse impact of mine drainage on the environment is controlled. The results indicate that the management model developed in this study achieves an excellent economic outcome and can serve as a potentially powerful tool for solving mining-related water management problems in the coal basin of North China.

Citation Wu, Q., Hu, B. X., Wan, L. & Zheng, C. (2010) Coal mine water management: optimization models and field application in North China. Hydrol. Sci. J. 55(4), 609–623.  相似文献   

12.
In this study, a two-stage fuzzy chance-constrained programming (TFCCP) approach is developed for water resources management under dual uncertainties. The concept of distribution with fuzzy probability (DFP) is presented as an extended form for expressing uncertainties. It is expressed as dual uncertainties with both stochastic and fuzzy characteristics. As an improvement upon the conventional inexact linear programming for handling uncertainties in the objective function and constraints, TFCCP has advantages in uncertainty reflection and policy analysis, especially when the input parameters are provided as fuzzy sets, probability distributions and DFPs. TFCCP integrates the two-stage stochastic programming (TSP) and fuzzy chance-constrained programming within a general optimization framework. TFCCP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. TFCCP is applied to a water resources management system with three users. Solutions from TFCCP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions were generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of stream flows, α-cut levels and fuzzy dominance indices.  相似文献   

13.
A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga–Bhadra river system in India.  相似文献   

14.
In this study, an interval-parameter multi-stage stochastic linear programming (IMSLP) method has been developed for water resources decision making under uncertainty. The IMSLP is a hybrid methodology of inexact optimization and multi-stage stochastic programming. It has three major advantages in comparison to the other optimization techniques. Firstly, it extends upon the existing multi-stage stochastic programming method by allowing uncertainties expressed as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. Secondly, penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised water-allocation targets are violated. Thirdly, it cannot only handle uncertainties through constructing a set of scenarios that is representative for the universe of possible outcomes, but also reflect dynamic features of the system conditions through transactions at discrete points in time over the planning horizon. The developed IMSLP method is applied to a hypothetical case study of water resources management. The results are helpful for water resources managers in not only making decisions of water allocation but also gaining insight into the tradeoffs between environmental and economic objectives.  相似文献   

15.
This paper presents the mathematical development of an integer — nonlinear programming chance — constrained optimization model for the minimum cost rehabilitation/replacement of water distribution system components. Particular attention is given to the handling of uncertainties in the roughness factors and the loading conditions including both the random demand and preassure head requirements.The advantages of the proposed model include the ability to: 1) handle the optimal timing of rehabilitation/replacement for water distribution system components; 2) link a mixed-integer linear program solver, a nonlinear program solver, and a hydraulic simulator into an optimization framework; 3) handle the uncertainties of some of the variables; 4) incorporate various kinds of cost functions; and 5) handle multiple loading conditions.  相似文献   

16.
This paper presents the mathematical development of an integer — nonlinear programming chance — constrained optimization model for the minimum cost rehabilitation/replacement of water distribution system components. Particular attention is given to the handling of uncertainties in the roughness factors and the loading conditions including both the random demand and preassure head requirements.The advantages of the proposed model include the ability to: 1) handle the optimal timing of rehabilitation/replacement for water distribution system components; 2) link a mixed-integer linear program solver, a nonlinear program solver, and a hydraulic simulator into an optimization framework; 3) handle the uncertainties of some of the variables; 4) incorporate various kinds of cost functions; and 5) handle multiple loading conditions.  相似文献   

17.
Abstract

A nonlinear, multi-objective optimization methodology is presented that seeks to maximize free product recovery of light non-aqueous phase liquids (LNAPLs) while minimizing operation cost, by introducing the novel concept of optimal alternating pumping and resting periods. This process allows more oil to flow towards the extraction wells, ensuring maximum free product removal at the end of the remediation period with minimum groundwater extraction. The methodology presented here combines FEHM (Finite Element Heat and Mass transfer code), a multiphase groundwater model that simulates LNAPL transport, with three evolutionary algorithms: the genetic algorithm (GA), the differential evolution (DE) algorithm and the particle swarm optimization (PSO) algorithm. The proposed optimal free-phase recovery strategy was tested using data from a field site, located near Athens, Greece. The PSO and DE solutions were very similar, while that provided by the GA was inferior, although the computation time was roughly the same for all algorithms. One of the most efficient algorithms (PSO) was chosen to approximate the optimal Pareto front, a method that provides multiple options to decision makers. When the optimal strategy is implemented, although a significant amount of LNAPL free product is captured, a spreading of the LNAPL plume occurs.

Editor Z.W. Kundzewicz; Associate editor L. See

Citation Dokou, Z. and Karatzas, G.P., 2013. Multi-objective optimization for free-phase LNAPL recovery using evolutionary computation algorithms. Hydrological Sciences Journal, 58 (3), 671–685.  相似文献   

18.
姬慧 《山西地震》2001,(2):25-27,34
以结构应变能最大和结构造价最低为目标函数,引入离散变量,进行了多目标优化设计,从中找出结构应变能最大、结构造价最低的最优截面。结果表明,所提出的理论和方法是合理的。  相似文献   

19.
In this study, an interval-valued fuzzy linear programming with infinite α-cuts (IVFLP-I) method is developed for municipal solid waste (MSW) management under uncertainty. IVFLP-I can not only tackle uncertainties expressed as intervals and interval-valued fuzzy sets, but also take all fuzzy information into account by discretizing infinite α-cut levels to the interval-valued fuzzy membership functions. Through adoption of the interval-valued fuzzy sets, IVFLP-I can directly communicate information of waste managers’ confidence levels over various subjective judgments into the optimization process. Compared to the existing methods in which only finite α-cut levels exist, IVFLP-I would have enhanced the robustness in the optimization efforts. A MSW management problem is studied to illustrate the applicability of the proposed method. Four groups of optimal solutions can be obtained through assigning different intervals of α-cut levels. The results indicate that wider intervals of α-cut levels could lead to a lower risk level of constraint violation associated with a higher system cost; contrarily, narrower intervals of α-cut levels could lead to a lower cost with a higher risk of violating the constraints. The solutions under different intervals of α-cut levels can support in-depth analyses of tradeoffs between system costs and constraint-violation risks.  相似文献   

20.
In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号