首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
Spatial and temporal variation in wet canopy conditions following precipitation events can influence processes such as transpiration and photosynthesis, which can be further enhanced as upper canopy leaves dry more rapidly than the understory following each event. As part of a larger study aimed at improving land surface modelling of evapotranspiration processes in wet tropical forests, we compared transpiration among trees with exposed and shaded crowns under both wet and dry canopy conditions in central Costa Rica, which has an average 4200 mm annual rainfall. Transpiration was estimated for 5 months using 43 sap flux sensors in eight dominant, ten midstory and eight suppressed trees in a mature forest stand surrounding a 40‐m tower equipped with micrometeorological sensors. Dominant trees were 13% of the plot's trees and contributed around 76% to total transpiration at this site, whereas midstory and suppressed trees contributed 18 and 5%, respectively. After accounting for vapour pressure deficit and solar radiation, leaf wetness was a significant driver of sap flux, reducing it by as much as 28%. Under dry conditions, sap flux rates (Js) of dominant trees were similar to midstory trees and were almost double that of suppressed trees. On wet days, all trees had similarly low Js. As expected, semi‐dry conditions (dry upper canopy) led to higher Js in dominant trees than midstory, which had wetter leaves, but semi‐dry conditions only reduced total stand transpiration slightly and did not change the relative proportion of transpiration from dominant and midstory. Therefore, models that better capture forest stand wet–dry canopy dynamics and individual tree water use strategies are needed to improve accuracy of predictions of water recycling over tropical forests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Artemisia ordosica is considered as an excellent sand‐fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10‐year‐old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water‐carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
W. Zhao  X. Chang  Z. Zhang 《水文研究》2009,23(10):1461-1470
As an important source of income in the region's economy, the jujube plantations are very common in arid north‐western China, and their planted areas continue to expand. In the central Heihe River Basin of arid north‐western China, Linze jujube (Zizyphus jujuba Mill. var. inermis (Bunge) Rehd.) plantations cover more than 10,000 ha, too. Water use by this species is expected to change or modify catchment hydrological process. To our knowledge, there is no information on the transpiration and canopy conductance of the jujube plantations in arid north‐western China. Therefore, Transpiration and canopy conductance were monitored in a 14‐year‐old Linze jujube orchard. The experiment was carried out in the central Heihe River Basin, near Pingchuan Town (Linze County, Gansu Province, China) during growing season of 2006, from May to the first ten days of October. Eight trees were used to measure sap flow using the heat‐pulse‐velocity method. The orchard was irrigated adequately during the study. Transpiration was estimated from the sap flow measurements. During the experiment, the transpiration rate of the orchard ranged from 0·32 to 1·40 mm per day. Canopy conductance was obtained from estimated daily transpiration and climatic variables measured on a half‐hour basis, and canopy conductance for water vapour transfer was between 1·20 to 82·57 mm s?1, with a mean of 11·86 ± 6·84 mm s?1 during the observation period. Air temperature and vapour‐pressure deficit exhibited a linear relationship with sap flow velocity and the relationship between these factors and canopy conductance could be represented by an exponential decay function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present an investigation of interspecies differences in transpiration of the 2 most common plantation forest tree species in Japan, both in the family Cupressaceae with different northern limits of native distribution, Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don). The stem sap flow rate was measured in 2 nearby stands of similar leaf area index in a 42‐year‐old plantation. Single‐tree and stand‐scale transpiration rates (Etre and Esta, respectively) were observed during an ideal autumn environment. At the stand scale, mean sap flux density of Hinoki was greater than that of Sugi, whereas total sapwood area per ground area was smaller in Hinoki than Sugi. Because the 2 variables had counterbalancing effects on transpiration, Esta of Hinoki was similar to (94% of) that of Sugi. This offset was also found between the mean Etre of the 2 species. Esta was similar between the stands from May to October, whereas Esta of Sugi was notably greater than that of Hinoki from February to April. During these 3 months, the difference in cumulative Esta was 21.7 mm, which accounted for 79% of the difference in annual Esta between Hinoki and Sugi (192 and 219 mm/year, respectively). We found that canopy conductance (Gc) and its sensitivity to the mean vapour pressure deficit during daylight hours in Sugi were particularly high in early spring, whereas those in Hinoki shifted gradually throughout the growing season. This difference was related to the optimal temperature of Gc in Sugi, which was approximately 10 °C lower than that in Hinoki. Our results suggest that plantations of water‐conserving species such as Hinoki produce timber slowly but yield water resources generously. Moreover, for plantations of trees sensitive to high temperature, such as Sugi, managers should be concerned about possible future decline caused by anticipated global warming.  相似文献   

6.
Conservation management for the water dependent desert‐oasis ecotone in arid northwest China requires information on the water use of the dominant species. However, no studies have quantified their combined water use or linked species composition to ecotone transpiration. Here, the water use of three dominant shelterbelt shrubs (Haloxylon ammodendron, Nitraria tangutorum, and Calligonum mongolicum) within an ecotone was measured throughout the full leaf‐out period for three shrub species from 30 May to 16 October 2014, with sap flow gauges using the stem heat balance approach. Species‐specific transpiration was estimated by scaling up sap flow velocities measured in individual stems, to stand area level, using the frequency distribution of stem diameter and assuming a constant proportionality between sap flow velocity and basal cross‐sectional area for all stems. The mean peak sap flux densities (Jsn) for H. ammodendron, N. tangutorum, and C. mongolicum, were 40.12 g cm?2 h?1, 71.33 g cm?2 h?1, and 60.34 g cm?2 h?1, respectively, and the mean estimated daily area‐averaged transpiration rates (Tdaily) for the same species were 0.56 mm day?1, 0.34 mm day?1, and 0.11 mm day?1. The accumulative stand transpiration was approximately 140.8 mm throughout the measurement period, exceeding precipitation by as much as 42.1 mm. Furthermore, Tdaily of these shrubs appeared to be much less sensitive to soil moisture as compared to atmospheric drivers, and the relationship between Jsn and atmospheric drivers was likely uninfluenced by soil moisture regimes in the whole profile (to 1‐m depth), especially for H. ammodendron and C. mongolicum. Results indicate that these shrubs may use deep soil water recharged by capillary rise, or may directly access shallow groundwater. This study provides quantitative data offering important implications for ecotone conservation and water and land resource management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we aimed to clarify spatial variations in xylem sap flow, and to determine the impacts of these variations on stand‐scale transpiration (E) estimates. We examined circumferential and radial variations in sap flow velocity (Fd) measured at several directions and depths in tree trunks of black locust (Robinia pseudoacacia) and native oak (Quercus liaotungensis), both of which have ring‐porous wood anatomy, in forest stands on the Loess Plateau, China. We evaluated the impacts of circumferential variations in Fd on stand‐scale transpiration estimates using a simple scaling exercise. We found significant circumferential variations in Fd in the outermost xylem in both species (coefficients of variation = 20–45%). For both species, Fd measured at the inner xylem was smaller than that of the outermost xylem and the Fd at the depth of > 10 mm was almost zero. The simple exercises showed that omitting circumferential variations in Fd affected the E estimate by 16–21%, which was less than the effects of omitting within‐tree radial and tree‐to‐tree variations in Fd in both species. These results suggest that circumferential variations in Fd can be a minor source of error for E estimates compared with within‐tree radial and tree‐to‐tree variations in Fd, regardless of the significant circumferential variations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Canopy interception and its evaporation into the atmosphere during irrigation or a rainfall event are important in irrigation scheduling, but are challenging to estimate using conventional methods. This study introduces a new approach to estimate the canopy interception from measurements of actual total evapotranspiration (ET) using eddy covariance and estimation of the transpiration from measurements of sap flow. The measurements were conducted over a small‐scale sprinkler‐irrigated cotton field before, during and after sprinkler irrigation. Evaporation and sap flow dynamics during irrigation show that the total ET during irrigation increased significantly because of the evaporation of free intercepted water while transpiration was suppressed almost completely. The difference between actual ET and transpiration (sap flow) during and immediately following irrigation (post irrigation) represents the total canopy evaporation while the canopy interception capacity was calculated as the difference between actual ET and transpiration (sap flow) during drying (post irrigation) following cessation of the irrigation. The canopy evaporation of cotton canopy was calculated as 0.8 mm, and the interception capacity was estimated to be 0.31 mm of water. The measurement uncertainty in both the non‐dimensional ET and non‐dimensional sap flow was shown to be very low. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Plant transpiration depends on environmental conditions, and soil water availability is its primary control under water deficit conditions. In this study, we improve a simplified process‐based model (hereafter “BTA”) by including soil water potential (ψsoil) to explicitly represent the dependence of plant transpiration on root‐zone moisture conditions. The improved model is denoted as the BTA‐ψ model. We assessed the performance of the BTA and BTA‐ψ models in a subtropical monsoon climate and a Mediterranean climate with different levels of water stress. The BTA model performed reasonably in estimating daily and hourly transpiration under sufficient water conditions, but it failed during dry periods. Overall, the BTA‐ψ model provided a significant improvement for estimating transpiration under a wide range of soil moisture conditions. Although both models could estimate transpiration (sap flow) at night, BTA‐ψ was superior to BTA in this regard. Species differences in the calibrated parameters of both models were consistent with leaf‐level photosynthetic measurements on each species, as expected given the physiological basis of these parameters. With a simplified representation of physiological regulation and reasonable performance across a range of soil moisture conditions, the BTA‐ψ model provides a useful alternative to purely empirical models for modelling transpiration.  相似文献   

10.
Quantifying the spatial variability of species-specific tree transpiration across hillslopes is important for estimating watershed-scale evapotranspiration (ET) and predicting spatial drought effects on vegetation. The objectives of this study are to (1) assess sap flux density (Js) and tree-level transpiration (Ts) across three contrasting zones a (riparian buffer, mid-hillslope and upland-hillslope, (2) determine how species-specific Js responds to vapour pressure deficit (VPD) and (3) estimate watershed-level transpiration (Tw) using Ts derived from each zone. During 2015 and 2016, we measured Js in eight tree species in the three topographic zones in a small 12-ha forested watershed in the Piedmont region of central North Carolina. In the dry year of 2015, loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana) and sweetgum (Liquidambar styraciflua) Js rates were significantly higher in the riparian buffer when compared to the other two zones. In contrast, Js rates in tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were significantly lower in the buffer than in the mid-hillslope. Daily Ts varied by zone and ranged from 10 to 93 L/day in the dry year and from 9 to 122 L/day in the wet year (2016). Js responded nonlinearly to VPD in all species and zones. Annual Tw was 447, 377 and 340 mm based on scaled-Js data for the buffer, mid-hillslope and upland-hillslope, respectively. We conclude that large spatial variability in Js and scaled Tw was driven by differences in soil moisture at each zone and forest composition. Consequently, spatial heterogeneity of vegetation and soil moisture must be considered when accurately quantifying watershed level ET.  相似文献   

11.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   

12.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A modified Jarvis–Stewart model of canopy transpiration (Ec) was tested over five ecosystems differing in climate, soil type and species composition. The aims of this study were to investigate the model's applicability over multiple ecosystems; to determine whether the number of model parameters could be reduced by assuming that site‐specific responses of Ec to solar radiation, vapour pressure deficit and soil moisture content vary little between sites; and to examine convergence of behaviour of canopy water‐use across multiple sites. This was accomplished by the following: (i) calibrating the model for each site to determine a set of site‐specific (SS) parameters, and (ii) calibrating the model for all sites simultaneously to determine a set of combined sites (CS) parameters. The performance of both models was compared with measured Ec data and a statistical benchmark using an artificial neural network (ANN). Both the CS and SS models performed well, explaining hourly and daily variation in Ec. The SS model produced slightly better model statistics [R2 = 0.75–0.91; model efficiency (ME) = 0.53–0.81; root mean square error (RMSE) = 0.0015–0.0280 mm h‐1] than the CS model (R2 = 0.68–0.87; ME = 0.45–0.72; RMSE = 0.0023–0.0164 mm h‐1). Both were highly comparable with the ANN (R2 = 0.77–0.90; ME = 0.58–0.80; RMSE = 0.0007–0.0122 mm h‐1). These results indicate that the response of canopy water‐use to abiotic drivers displayed significant convergence across sites, but the absolute magnitude of Ec was site specific. Period totals estimated with the modified Jarvis–Stewart model provided close approximations of observed totals, demonstrating the effectiveness of this model as a tool aiding water resource management. Analysis of the measured diel patterns of water use revealed significant nocturnal transpiration (9–18% of total water use by the canopy), but no Jarvis–Stewart formulations are able to capture this because of the dependence of water‐use on solar radiation, which is zero at night. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Studies of evapotranspiration (ET) processes in forests often only measure one component of total ET, most commonly interception. This study examined all three components of annual ET (interception, evaporation from the forest floor and transpiration) and the correlations between them at 18 plantation forest sites in two species. All plantations had closed canopies, and sparse or no understorey. Single‐sided leaf area index averaged 3.5 (standard deviation ±0.5) in Eucalyptus globulus Labill. and 6.1 (±0.8) in Pinus radiata D.Don. Measurements included annual totals of rainfall in the open and under the canopy, stem flow (four sites only), evaporation from the forest floor and transpiration by the overstorey. Interception (I) averaged 19% (±4.9) of annual rainfall in E. globulus compared with 31% (±11.1) in P. radiata. However, higher annual interception in P. radiata did not result in higher total ET because annual evaporation from the forest floor (E) averaged 29% (±4.9) of rainfall in E. globulus but only 15% (±3.5) in P. radiata. Hence, the relative contribution of annual I plus E to ET did not differ significantly between the two species, averaging 48% (±7.3) of annual rainfall in E. globulus compared with 46% (±11.8) in P. radiata. As reported previously, transpiration did not differ significantly between the two species either, but was strongly related to depth‐to‐groundwater. In closed canopy plantations, mean annual ET did not differ between the two species. We conclude that when grown in plantations under similar soil and climatic conditions, conifer and broad‐leaved tree species can have similar annual ET, once the canopy of the plantation has closed. Lower average annual interception in broad‐leaved trees was offset by higher soil evaporation. These results highlight the importance of measuring all components of ET in studies of vegetation water use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to obtain the diurnal and seasonal changes of trunk sap flow in desert‐living Caragana korshinskii so as to understand its water requirement and ecological significance. The experiment was carried out with 15‐year old Caragana korshinskii grown in north‐west China under natural conditions. Heat pulse sensors based on the heat compensation theory were applied to measure the trunk sap flow, and soil moisture content at 0–300 cm layer, using tube‐type time domain reflectometry (Tube‐TDR). The solar radiation, the maximum and minimum air temperatures, relative humidity, wind speed, wind direction and precipitation were measured at a standard automatic weather station. The diurnal and seasonal variations of sap flow rate, the sap velocity at different positions in the trunk and the sap flow rate under different weather conditions were analysed. And the correlation between the sap flow rate and the meteorological factors was also analysed. Results showed that the trunk sap flow varied regularly in the diurnal term and the sap flow velocity decreased with the probe‐inserted depth into the sapwood. Magnitude of sap flow changed considerably between sunny and rainy days. The order of the main meteorological factors affecting the sap flow rate of Caragana korshinskii shrubs were: vapour pressure deficit > solar radiation > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season can be used to estimate the transpiration of Caragana korshinskii. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Stand transpiration (E) estimated using the sap‐flux method includes uncertainty induced by variations in sap flux (F) within a tree (i.e. radial and azimuthal variations) and those between trees. Unlike radial variations, azimuthal variations are not particularly systematic (i.e. higher/lower F is not always recorded for a specific direction). Here, we present a theoretical framework to address the question on how to allocate a limited number of sensors to minimize uncertainty in E estimates. Specifically, we compare uncertainty in E estimates for two cases: (1) measuring F for two or more directions to cover azimuthal variations in F and (2) measuring F for one direction to cover between‐tree variations in F. The framework formulates the variation in the probability density function for E (σE) based on F recorded in m different azimuthal directions (e.g. north, east, south and west). This formula allows us to determine the m value that minimizes σE. This study applied the framework to F data recorded for a 55‐year‐old Cryptomeria japonica stand. σE for m = 1 was found to be less than the values for m = 2, 3 and 4. Our results suggest that measuring F for one azimuthal direction provides more reliable E estimates than measuring F for two or more azimuthal directions for this stand, given a limited number of sensors. Application of this framework to other datasets helps us decide how to allocate sensors most effectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this study was to quantify components of the water balance related to root‐water uptake in the soil below a hedgerow. At this local scale, a two‐dimensional (2D) flow domain in the xz plane 6 m long and 1·55 m deep was considered. An attempt was made to estimate transpiration using a simulation model. The SWMS‐2D model was modified and used to simulate temporally and spatially heterogeneous boundary conditions. A function with a variable spatial distribution of root‐water uptake was considered, and model calibration was performed by adjusting this root‐water uptake distribution. Observed data from a previous field study were compared against model predictions. During the validation step, satisfactory agreement was obtained, as the difference between observed and modelled pressure head values was less than 50 cm for 80% of the study data. Hedge transpiration capacity is a significant component of soil‐water balance in the summer, when predicted transpiration reaches about 5·6 mm day?1. One of the most important findings is that hedge transpiration is nearly twice that of a forest canopy. In addition, soil‐water content is significantly different whether downslope or upslope depending on the root‐water uptake. The high transpiration rate was mainly due to the presence of a shallow water table below the hedgerow trees. Soil‐water content was not a limiting factor for transpiration in this context, as it could be in one with a much deeper water table. Hedgerow tree transpiration exerts a strong impact not only on water content within the vadose zone but also on the water‐table profile along the transect. Results obtained at the local scale reveal that the global impact of hedges at the catchment scale has been underestimated in the past. Transpiration rate exerts a major influence on water balance at both the seasonal and annual scales for watersheds with a dense network of hedgerows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Hydrologic variability during 2005–2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS, soil water changes, precipitation (P) and precipitation throughfall, a local water balance was derived. Average annual canopy transpiration (EC) during 2005–2011 was 201 mm a?1 ± 47 mm a?1. A defoliation event reduced EC by 20% in 2007 compared with the 2005–2011 mean. During drought years in 2006 and 2010, stand transpiration was reduced by 8% in July 2006 and by 18% in 2010, respectively, compared with the overall July average. During July 2007, after the defoliation and subsequent reflushing of half of the leaves, EC was reduced by 25%. This stand may experience higher sensitivity to drought when recovering from a defoliation event as evidenced by the higher reduction of EC in 2010 (post‐defoliation) compared with 2006 (pre‐defoliation). Stream water discharge was normalized to the watershed area by dividing outflow with the watershed area. It showed the greatest correlation with transpiration for time lags of 24 days and 219 days, suggesting hydrological connectivity on the watershed scale; stream water discharge increases when transpiration decreases, coinciding with leaf‐on and leaf‐off conditions. Thus, any changes in transpiration or precipitation will also alter stream water discharge and therefore water availability. Under future climate change, frequency and intensity of precipitation and episodic defoliation events may alter local water balance components in this upland oak/pine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The simultaneous solution of the Planck equation (involving the widely used “dual-band” technique) using two shortwave infrared (SWIR) bands allows for an estimate of the fractional area of the hottest part of an active lava flow (f h) and the background temperature of the cooler crust (T c). The use of a high spectral and spatial resolution imaging spectrometer with a wide dynamic range of 15 bits (DAIS 7915) in the wavelength range from 0.501 to 12.67 μm resulted in the identification of crustal temperature and fractional areas for an intra-crater hot spot at Mount Etna, Italy. This study indicates the existence of a relationship between these T c and f h extracted from DAIS and Landsat TM data. When the dual band equation system is performed on a lava flow, a logarithmic distribution is obtained from a plot of the fractional area of the hottest temperature vs. the temperature of the cooler crust. An entirely different distribution is obtained over active degassing vents, where increases in T c occur without any increase in f h. This result indicates that we can use scatter plots of T c vs. fh to discriminate between different types of volcanic activity, in this case between degassing vents and lava flows, using satellite thermal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号