首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inundation of atoll islands by marine overwash is a serious threat to fresh groundwater, which can be a critical emergency water resource after artificial storage or other water resource infrastructure has been exhausted or destroyed. In contrast to drought, which slowly exhausts water supplies and often can be forecasted in time, overwash can occur with little warning and can ruin both rain catchment storage and groundwater reserves. In this study, a SUTRA‐based model is applied to estimate how groundwater contamination by overwash and subsequent recovery of fresh groundwater are influenced by geologic factors (aquifer hydraulic conductivity, dispersivity, and the presence or absence of a reef flat plate), the seasonal timing of the event (wet vs. dry), and the presence of hand‐dug wells that penetrate the reef flat plate. Actual tidal and rainfall data from regions in the western Pacific are applied to simulated 30‐month recovery periods for hypothetical islands with properties and conditions characteristic of the western Pacific. For all scenarios, results indicate that 12 to 16 months are required to achieve 60% recovery of fresh groundwater. However, the time required to restore useful quantities of groundwater to acceptable salt concentration at depths typical of hand‐dug wells is only 3 to 6 months. Of particular interest is the influence of the reef flat plate, which acts as a barrier to infiltrating seawater, thus preserving a pocket of confined freshwater during an overwash event and the recovery, which could probably be utilized if the necessary tools and equipment are on hand.  相似文献   

2.
Marine overwash events are among the most serious short‐term threats to groundwater supply of small coral islands. During such events, seawater can inundate small islands partially or completely, causing salinization of the aquifer. A comprehensive knowledge of freshwater lens recovery is essential for water planners on these islands. In this study, a numerical modelling approach is used to quantify recovery of the freshwater lens on 4 islands of the Maldives after a tsunami‐induced overwash event similar to that experienced from the Indian Ocean earthquake in December 2004. The islands vary in size (0.2 to 10.1 km2) and span the climatic regions of the Maldives. A tested 3‐dimensional SEAWAT groundwater model for each island is used to simulate the recovery process. Recharge rates from historical rainfall data and from global climate models are imposed on each island during the post‐overwash recovery period. The effect of groundwater pumping on lens recovery also is examined. Results show abrupt decrease in fresh groundwater volumes for each island, followed by recovery that is significantly influenced by island size and recharge patterns. Overall, salinization is more widespread on small islands (<1 km2), but recovery is more rapid than for large islands. Between 50% and 90% of lens recovery occurs after 2 years for small islands (<1 km2) whereas only 35% and 55% for large islands. Imposing pumping rates required to sustain the local population lengthened the recovery time between 5% and 15%, with smaller islands having the higher percentage. However, the governing factor on recovery time is the spatial extent of land surface inundation by the overwash event, with wave height and duration of the event having a negligible impact. A strong relationship exists between required recovery time and island surface area, thereby providing a method to determine recovery time for other atoll islands not investigated in this study with similar geologic structure. Our results can be used to aid in managing water resources during the post‐overwash period.  相似文献   

3.
Numerical Modeling of Atoll Island Hydrogeology   总被引:3,自引:0,他引:3  
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.  相似文献   

4.
Fresh groundwater reserves on small coral islands are under continual threat of salinization and contamination because of droughts, storm‐surge overwash events, over‐extraction, island community urbanization, and sea level rise. Whereas storm‐surge overwash events can cause sudden groundwater salinization, long‐term changes in rainfall patterns and sea level elevation have the potential of rendering these islands uninhabitable in the coming decades. This study demonstrates the use of a tested freshwater lens thickness simulator to estimate the groundwater resources of a set of atoll islands in the coming decades. The method uses ranges of projected rates of annual rainfall and sea level rise (SLR) to provide a range of probable lens thickness for each island. Projected rainfall is provided by General Circulation Models that accurately replicate the historical rainfall patterns in the geographic region of the islands. Methodology is applied to 68 atoll islands in the Federated States of Micronesia. These islands have widths that range between 150 and 1000 m, and experience annual rainfall rates of between 2.8 and 4.8 m. Results indicate that under average conditions of SLR, beach slope, and rainfall, almost half of the island will experience a 20% decrease in lens thickness by the year 2050. For worst‐case scenarios (high SLR, low rainfall), average decrease in lens thickness is 55%, with almost half of the islands experiencing a decrease of greater than 75% and half of the islands having a lens thickness less than 1.0 m. Small islands (widths less than 400 m) are particularly vulnerable because of shoreline recession. Groundwater on islands in the western region is less vulnerable to SLR because of a projected increase in rainfall during the coming decades. Results indicate the vulnerability of small islands to changing climatic conditions, and can be used for water resources management and community planning. Methodology can be applied to any group of islands as a first approximation of the effect of future climate conditions on groundwater resources. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Reserves of fresh groundwater on atoll islands are extremely fragile due to climatic and anthropogenic stresses. Of major concern is the quantity of water to be available in the coming decades under the influence of variable rainfall patterns, rising sea level, environmental conditions, and expected population growth that depends on groundwater resources. In this study, a 3‐dimensional numerical modelling approach using the SEAWAT modelling code is used to estimate freshwater lens volume fluctuation for 4 representative islands in the Republic of Maldives in response to long‐term changes in rainfall, sea‐level rise (SLR), and anthropogenic stresses such as groundwater pumping and short‐term impacts from tsunami‐induced marine overwash events. This work is divided into 2 papers. This first paper presents numerical model set‐up and calibration, and the effect of future rainfall patterns and SLR on fresh groundwater reserves. The second paper focuses on marine overwash events. The results of simulated future freshwater lens volume presented in the first study contribute to efficient groundwater resources planning and management for the Maldives in the upcoming decades. Freshwater lenses in small atoll islands (area < 0.6 km2) are shown to have a strong variability trends in the upcoming decades with expected reduction in lens volume between 11% and 36% due to SLR. In contrast, freshwater lenses in larger atoll islands (area > 1.0 km2) are shown to have less variability to changing patterns with expected reduction in lens volume between 8% and 26% due to SLR. Study results can provide water resource managers with valuable findings for consideration in water security measures.  相似文献   

6.
We present a simple modelling method to estimate the volume of available groundwater in the freshwater lens of atoll islands under steady-state conditions. Model inputs include annual rainfall depth, island width for cross-sections along the length of the island, aquifer hydraulic conductivity, and depth to the contact between the upper sand aquifer and the lower limestone aquifer. The methodology is tested for nine islands of varying size in the Maldives and Micronesia. Sensitivity analysis indicates that lens volume on large islands typically is governed by the depth to the discontinuity, whereas lens volume for smaller islands is governed by rainfall rate and hydraulic conductivity. Volume curves, which relate lens volume to lens thickness, are developed for each of the nine islands and for three generic island shapes to allow rapid estimation of lens volume given field-estimated lens thickness. The methods presented in this study can be used for any small atoll island.  相似文献   

7.
Groundwater resources of the Republic of the Maldives are threatened by a variety of factors including variable future rainfall patterns, continued population growth and associated pumping demands, rising sea level, and contamination from the land surface. This study assesses changes in groundwater availability due to variable rainfall patterns and sea level rise (SLR) in the coming decades, a key component of water resources management for the country. Using a suite of two‐dimensional density‐dependent groundwater flow models, time‐dependent thickness of the freshwater lens is simulated for a range of island sizes (200 to 1,100 m) during the time period of 2011 to 2050, with recharge to the freshwater lens calculated using rainfall patterns provided by general circulation models for the three distinct geographic regions of the Maldives. The effect of SLR on the freshwater lens is quantified using estimates of shoreline recession and associated decreases in island width. If rainfall is solely considered, groundwater availability is projected to increase, as lens thickness during the 2031–2050 time periods is slightly greater (1–5%) than during the 2011–2030 time period. However, including the impact of SLR indicates an overall decrease in lens thickness, with drastic decreases (60% to 100%) projected for small islands (200 m) and moderate decreases (12% to 14%) expected for 400 m islands, which accommodate one third of the national population. Similar methodologies can be used for other atoll island nations, such as the Republic of Marshall Islands, Federated States of Micronesia, and the Republic of Kiribati. For the Maldives, results from this study can be used in conjunction with population growth estimates to determine the feasibility of including groundwater in water resources planning and management for the country.  相似文献   

8.
Geoelectric and hydrologic surveys during spring tides revealed the spatiotemporal distribution of groundwater quality produced by tidal forcing in Fongafale Islet, Funafuti Atoll, Tuvalu. The observed low resistivity showed that saline water largely immersed the surficial Holocene aquifer, indicating that there is no thick freshwater lens in Fongafale Islet, unlike in other atoll islands of comparable size. Half of the islet was constructed by reclaiming the original swamp with porous, highly permeable coral blocks; this reclaimed area should not be considered as part of the islet width for calculation of the expected thickness of the freshwater lens. The degree of aquifer salinization depends on the topographic characteristics and the hydrologic controls on the inland propagation of the tidal forcing. Large changes in bulk resistivity and the electrical conductivity of groundwater from wells indicate that periodic salinization in phase with the semidiurnal tides was occurring widely, especially in areas at lower elevation than the high-tide level and in reclaimed areas with high permeability. Thin sheets of nearly fresh and brackish water were observed in the surficial aquifer in areas above the high-tide level and in taro swamps, respectively. The thinness of the brackish and freshwater sheets suggests that the taro swamps and the fresh groundwater resources of the islet are highly vulnerable to salinization from anticipated sea-level rise. An understanding of the inherent geologic and topographic features of an atoll is necessary to evaluate the groundwater resources of the atoll and assess the vulnerability of its water resources to climate change.  相似文献   

9.
A layered-aquifer model of groundwater occurrence in an atoll island was tested with a solute-transport numerical model. The computer model used, SUTRA, incorporates density-dependent flow. This can be significant in freshwater-saltwater interactions associated with the freshwater lens of an atoll island. Boundary conditions for the model included ocean and lagoon tidal variations. The model was calibrated to field data from Enjebi Island, Enewetak Atoll, and tested for sensitivity to a variety of parameters. This resulted in a hydraulic conductivity of 10 m day−1 for the surficial aquifer and 1000 m day−1 for the deeper aquifer; this combination of values gave an excellent reproduction of the tidal response data from test wells. The average salinity distribution was closely reproduced using a dispersivity of 0.02m. The computer simulation quantitatively supports the layered-aquifer model, including under conditions of density-dependent flow, and shows that tidal variations are the predominant driving force for flow beneath the island. The oscillating, vertical flow produced by the tidal variations creates an extensive mixing zone of brackish water. The layered-aquifer model with tidally driven flow is a significant improvement over the Ghyben-Herzberg-Dupuit model as it is conventionally applied to groundwater studies for many Pacific reef islands.  相似文献   

10.
Chui TF  Terry JP 《Ground water》2012,50(3):412-420
The principal natural source of fresh water on scattered coral atolls throughout the tropical Pacific Ocean is thin unconfined groundwater lenses within islet substrates. Although there are many threats to the viability of atoll fresh water lenses, salinization caused by large storm waves washing over individual atoll islets is poorly understood. In this study, a mathematical modeling approach is used to examine the immediate responses, longer-term behavior, and subsequent (partial) recovery of a Pacific atoll fresh water lens after saline damage caused by cyclone-generated wave washover under different scenarios. Important findings include: (1) the saline plume formed by a washover event mostly migrates downward first through the top coral sand and gravel substrate, but then exits the aquifer to the ocean laterally through the more permeable basement limestone; (2) a lower water table position before the washover event, rather than a longer duration of storm washover, causes more severe damage to the fresh water lens; (3) relatively fresher water can possibly be found as a preserved horizon in the deeper part of an aquifer after disturbance, especially if the fresh water lens extends into the limestone under normal conditions; (4) post-cyclone accumulation of sea water in the central depression (swamp) of an atoll islet prolongs the later stage of fresh water lens recovery.  相似文献   

11.
A two-dimensional finite element model for density dependent groundwater flow was calibrated to simulate sea water intrusion in Nauru Island in the Central Pacific Ocean. Nauru Island occupies an area of 22 km2 and supports a population of 8500. The island has been mined for its phosphate deposits and current reserves indicate that the mine has about eight years life remaining. The water supply of the island is about one third dependent on imported water which is also used as ballast on the phosphate ships. Imported water will not be available in the future, and a hydrogeological investigation shows that the island is underlain by a fresh water layer, less than 5 m thick. The freshwater layer overlies a thick transition zone of brackish water which in turn overlies sea water. Simulation of several management options shows that it is possible to substitute current importation of fresh water by careful extraction from the groundwater resources of the island.  相似文献   

12.
Understanding soil water dynamics and the water balance of tropical coral islands is important for the utilization and management of their limited freshwater resources, which is only from rainfall. However, there is a significant knowledge gap in the influence of soil water on the water cycle of coral islands. Soil water dynamics and the water balance of Zhaoshu Island, Xisha Archipelago were thus investigated using soil moisture measurements and the Hydrus-1D model from October 2018 to September 2019. Over the study period, vegetation transpiration, soil evaporation, groundwater recharge and storage in the vadose zone were approximately 196, 330, 365 and 20 mm, occupying 22%, 36%, 40% and 2% of annual rainfall total (911 mm), respectively. For the wet season (from May to October) these values became 75, 202, 455 and 40 mm, occupying 10%, 26% and 59% and 5% of the seasonal rainfall total (772 mm), respectively. During the dry season (from November to April), a dry soil layer between 40 and 120 cm depth of the soil profile was identified that prevented water exchange between the upper soil layers and the groundwater resulting in the development of deep roots so that vegetation could extract groundwater to supplement their water requirements. Vegetation not only consumes all dry season rainfall (140 mm) but extracts water deeply from groundwater (90 mm) as well as from the vadose layer (20 mm). As such, the vegetation appears to be groundwater-dependent ecosystems. The research results aid us to better understand the process of water dynamics on coral islands and to protect coral island ecosystems.  相似文献   

13.
For small tropical islands with limited freshwater resources, understanding how island hydrology is influenced by regional climate is important, considering projected hydroclimate and sea level changes as well as growing populations dependent on limited groundwater resources. However, the relationship between climate variability and hydrologic variability for many tropical islands remains uncertain due to local hydroclimatic data scarcity. Here, we present a case study from Kiritimati, Republic of Kiribati (2°N, 157°W), utilizing the normalized difference vegetation index to investigate variability in island surface water area, an important link between climate variability and groundwater storage. Kiritimati surface water area varies seasonally, following wet and dry seasons, and interannually, due to hydroclimate variability associated with the El Niño/Southern Oscillation. The NIÑO3.4 sea surface temperature index, satellite‐derived precipitation, precipitation minus evaporation, and local sea level all had significant positive correlations with surface water area. Lagged correlations show sea level changes and precipitation influence surface water area up to 6 months later. Differences in the timing of surface water area changes and variable climate‐surface water area correlations in island subregions indicate that surface hydrology on Kiritimati is not uniform in response to climate variations. Rather, the magnitude of the ocean–atmosphere anomalies and island–ocean connectivity determine the extent to which sea level and precipitation control surface water area. The very strong 2015–2016 El Niño event led to the largest surface water area measured in the 18‐year data set. Surface water area decreased to pre‐event values in a similarly rapid manner (<6 months) after both the very strong 2015–2016 event and the 2009–2010 moderate El Niño event. Future changes in the frequency and amplitude of interannual hydroclimate variability as well as seasonal duration will thus alter surface water coverage on Kiritimati, with implications for freshwater resources, flooding, and drought.  相似文献   

14.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we try to calculate precipitation in Miyake Island, Japan. In order to know the temporal and spatial variations of precipitation, we have set 15 rain gauges randomly in the island to collect the monthly precipitation data since June 1994. It is found that the precipitation is very different from point to point. First, we used statistical methods to get the correlations between the monthly precipitation at our survey points and that at the weather station. Next, regression analyses were used to establish formulae to calculate precipitation as a function of altitude, aspect of the geomorphological surface and wind direction. Based on these results, distributions of monthly and yearly precipitation and δ18O over the island were assessed. The results show that landscape patterns strongly influence precipitation distribution over the island, with the highest precipitation being found on the windward side, about 400–600 m above sea level. Even at places at the same altitude, the precipitation was different because of the aspect of the landscape. At the same time, altitude effects for δ18O on both the windward and leeward sides were −0·10‰/100 m and −0·15‰/100 m, respectively. Comparing with the distribution of precipitation distribution, it was also found that δ18O for the windward and leeward sides was different from that for precipitation, which means that both topographical effects must be considered separately. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Sustainable groundwater management in Kinmen Island   总被引:1,自引:0,他引:1  
Kinmen county is located in the southwest of Fujen province, China. It comprises Kinmen, Leiyu and other small islands. Its total area is around 150 km2. Kinmen is the largest island, and 95% of the population resides there. The average annual precipitation is 1072 mm. Rainfall is concentrated in a 5 month period from mid‐April to mid‐September. Water resources are limited relative to demand. Eastern Kinmen utilizes surface water, whereas western Kinmen uses groundwater. Moreover, the Kinmen sorghum liquor is brewed using the native groundwater in the west of the island. MODFLOW‐96 was used to simulate the groundwater distribution and determine the annual amount of infiltration, pumping, and boundary inflow and outflow. Additionally, a groundwater management index was adopted to evaluate the status of groundwater level change, thus allowing local government officials to adjust the pumping scheme dynamically. To achieve a sustainable groundwater supply in Kinmen, an integrated groundwater extraction plan was proposed. This plan includes enhancing the infiltration by using treated wastewater from the east of the island, monitoring the groundwater level change, adjusting the groundwater pumping scheme, and constructing seawater desalination plants. If the hostile confrontation between Taiwan and mainland China is resolved, then the water supply through an undersea pipeline from Sharmen, China, to Kinmen can be another potential source of water for Kinmen in the future. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The recovery of Santa Rosa Island in northwest Florida is characterized following Hurricane Katrina (September 2005), which was preceded by Hurricanes Ivan (2004) and Dennis (2005). Beach and dune recovery were quantified to the east and west of Pensacola Beach through a comparison of LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery. East of Pensacola Beach (the Santa Rosa Unit), the shoreline retreated by an average of 64 m during the 2004–2005 hurricane season and recovered by an average of 19 m. To the west of Pensacola Beach (the Fort Pickens Unit), the shoreline retreated by an average of 30 m, and while no significant shoreface recovery was observed, the presence of vegetation on low‐profile dunes promoted backshore accretion. It is found that beachface recovery in the Santa Rosa Unit and backshore accretion in the Fort Pickens Unit occurred at the widest sections of the island where the pre‐storm profile volume had been relatively large and overwash penetration was at a minimum. The narrow sections of the island (between cuspate headlands) had a smaller profile volume before the storms, leading to greater overwash penetration and in some cases island breaching in both sections, which limited the volume of sediment available for shoreface recovery. The alongshore variation in recovery is not only related to the island width, but also the offshore bathymetry, height of the pre‐storm dunes and the overwash penetration. If sufficient time is allowed for the return of vegetation and the recovery of the dunes, the variations in storm impact observed during Hurricane Ivan will be reinforced during subsequent storms. In this respect, the level of impact during subsequent storms and the ability of the island to recover will depend on the frequency of storm events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to interpret hydrologic controls on biogeochemical processes and to manage water resources. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water did not conform to the commonly observed “elevation effect,” which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2–3 weeks for isotopic analysis for 1 year. Our results confirmed the lack of elevational variation of surface water isotopes within this leeward basin. Although we find elevational variation in precipitation in the eastern portion of the watershed, this elevation effect is counteracted by rainout with distance from the Pacific coast. In addition, we found significant variation in surface water isotope values between catchments underlain predominantly by basalt or sandstone. The degree of separation was strongest during the summer when low flows reflect deeper groundwater sources. This indicates that baseflow within streams drained by each lithology is being supplied from two distinctly separate water sources. In addition, the flow of the Marys River is dominated by water originating from the sandstone water source, particularly during the low‐flow summer months. We interpreted that the difference in water source results from sandstone catchments having highly fractured geology or locally tipping to the east facilitating cross‐basin water exchange from the windward to the leeward side of the Coast Range. Our results challenge topographic derived watershed boundaries in permeable sedimentary rocks; highlighting the overwhelming importance of underlying geology.  相似文献   

19.
Numerous socio-economic activities depend on the seasonal rainfall and groundwater recharge cycle across the Central American Isthmus. Population growth and unregulated land use changes resulted in extensive surface water pollution and a large dependency on groundwater resources. This work combines stable isotope variations in rainfall, surface water, and groundwater of Costa Rica, Nicaragua, El Salvador, and Honduras to develop a regionalized rainfall isoscape, isotopic lapse rates, spatial–temporal isotopic variations, and air mass back trajectories determining potential mean recharge elevations, moisture circulation patterns, and surface water–groundwater interactions. Intra-seasonal rainfall modes resulted in two isotopically depleted incursions (W-shaped isotopic pattern) during the wet season and two enriched pulses during the mid-summer drought and the months of the strongest trade winds. Notable isotopic sub-cloud fractionation and near-surface secondary evaporation were identified as common denominators within the Central American Dry Corridor. Groundwater and surface water isotope ratios depicted the strong orographic separation into the Caribbean and Pacific domains, mainly induced by the governing moisture transport from the Caribbean Sea, complex rainfall producing systems across the N-S mountain range, and the subsequent mixing with local evapotranspiration, and, to a lesser degree, the eastern Pacific Ocean fluxes. Groundwater recharge was characterized by (a) depleted recharge in highland areas (72.3%), (b) rapid recharge via preferential flow paths (13.1%), and enriched recharge due to near-surface secondary fractionation (14.6%). Median recharge elevation ranged from 1,104 to 1,979 m a.s.l. These results are intended to enhance forest conservation practices, inform water protection regulations, and facilitate water security and sustainability planning in the Central American Isthmus.  相似文献   

20.
Hydrogen and oxygen isotopes of water are common environmental tracers used to investigate hydrological processes, such as evaporation, vegetation water use, surface water–groundwater interaction, and groundwater recharge. The water isotope signature in surface water and groundwater evolves from the initial rain signature. In mountain terrain, rain water stable isotope composition spatially varies due to complex orographic precipitation processes. Many studies have examined the isotope–elevation relationships, while few have quantitatively investigate the terrain aspect and slope effect on rain isotope distribution. In this paper, we examine the orographic effects more completely, including elevation, terrain slope and aspect, on stable isotope distribution in the Mount Lofty Ranges (MLR) of South Australia, using a multivariate regression model. The regression of precipitation isotope composition suggests that orographic effects are the dominant controls on isotope spatial variability. About 75% of spatial variability in δ18O and deuterium excess is represented by the regression using solely orography-related variables (elevation, terrain aspect and slope), with about 25% of δ18O spatial variability attributed to the terrain aspect and slope effect. The lapse rate is about −0.25‰ for every 100 m at both windward and leeward slopes. However, at the same elevation, δ18O at the leeward slope (eastern MLR) is 0.5‰ larger than that at the windward slope. The difference can be explained by different mechanisms – continuous rain-out processes on the windward side and sub-cloud evaporation on the leeward side. Both δ18O and deuterium excess maps (1 km resolution) are constructed based on the regression results for the MLR. Both maps are consistent with groundwater of local precipitation origin, and useful to examine groundwater recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号