首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A methodology is developed to estimate daily river discharge at an ungauged site using remote sensing data. Use is made of ERS‐2 and ENVISAT satellite altimetry to provide a time series of river channel stage levels and longitudinal channel slope and Landsat satellite imagery to provide a range of channel widths over a 50 km reach of river. The data are substituted into the Bjerklie et al. ( 2003 ) equation, which is based on the Manning's resistance equation and has been developed using a global database of channel hydraulic information and discharge measurements. Our methodology has been applied at three locations on the Mekong and Ob Rivers and validated against daily in situ discharge measurements. The results show Nash–Sutcliffe efficiency values of 0.90 at Nakhon Phanom and 0.86 at Vientiane on the Mekong, and 0.86 at Kalpashevo on the Ob. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Satellite altimetry is routinely used to provide levels for oceans or large inland water bodies from space. By utilizing retracking schemes specially designed for inland waters, meaningful river stages can also be recovered when standard techniques fail. Utilizing retracked waveforms from ERS‐2 and ENVISAT along the Mekong, comparisons against observed stage measurements show that the altimetric measurements have a root mean square error (RMSE) of 0·44–0·65 m for ENVISAT and 0·46–0·76 m for ERS‐2. For many applications, however, stage is insufficient because discharge is the primary requirement. Investigations were therefore undertaken to estimate discharges at a downstream site (Nakhon Phanom (NP)) assuming that in situ data are available at a site 400 km upstream (Vientiane). Two hypothetical, but realistic scenarios were considered. Firstly, that NP was the site of a de‐commissioned gauge and secondly, that the site has never been gauged. Using both scenarios, predictions were made for the daily discharge using methods with and without altimetric stage data. In the first scenario using a linear regression approach the altimetry data improved the Nash‐Sutcliffe r2 value from 0·884 to 0·935. The second scenario used known river cross‐sections while lateral inflows were inferred from a hydrological model: this scenario gave an increase in the r2 value from 0·823 to 0·893. The use of altimetric stage data is shown to improve estimated discharges and further applications are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
What hydraulic information can be gained from remotely sensed observations of a river's surface? In this study, we analyze the relationship between river bed undulations and water surfaces for an ungauged reach of the Xingu River, a first‐order tributary of the Amazon river. This braided reach is crosscut more than 10 times by a ENVISAT (ENVironmental SATellite) track that extends over 100 km. Rating curves based on a modeled discharge series and altimetric measurements are used, including the zero‐flow depth Z 0 parameter, which describes river's bathymetry. River widths are determined from JERS (Japanese Earth Ressources Satellite) images. Hydrodynamic laws predict that irregularities in the geometry of a river bed produce spatial and temporal variations in the water level, as well as in its slope. Observation of these changes is a goal of the Surface Water and Ocean Topography satellite mission, which has a final objective of determining river discharge. First, the concept of hydraulic visibility is introduced, and the seasonality of water surface slope is highlighted along with different flow regimes and reach behaviors. Then, we propose a new single‐thread effective hydraulic approach for modeling braided rivers flows, based on the observation scales of current satellite altimetry. The effective hydraulic model is able to reproduce water surface elevations derived by satellite altimetry, and it shows that hydrodynamical signatures are more visible in areas where the river bed morphology varies significantly and for reaches with strong downstream control. The results of this study suggest that longitudinal variations of the slope might be an interesting criteria for the analysis of river segmentation into elementary reaches for the Surface Water Ocean Topography mission that will provide continuous measurements of the water surface elevations, the slopes, and the reach widths.  相似文献   

4.
Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past ~25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called ‘reference’ missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of ~0.3 mm/year). Regional trend uncertainty has been reduced by a factor of ~2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2–4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.  相似文献   

5.
Coarse-resolution satellite albedo products are important for climate change and energy balance research because of their capability to characterize the spatiotemporal patterns of land surface parameters at both the regional and global scales. The accuracy of coarse-resolution products is usually assessed via comparison with in situ measurements. The key issue in the comparison of remote sensing observations with in situ measurements is scaling and uncertainty. This paper presents a strategy for validating 1-km-resolution remote sensing albedo products using field measurements and high-resolution remote sensing observations. Field measurements were collected to calibrate the high-resolution(30 m) albedo products derived from HJ-1a/b images. Then, the calibrated high-resolution albedo maps were resampled(i.e., upscaled) to assess the accuracy of the coarse-resolution albedo products. The samples of field measurements and high-resolution pixels are based on an uncertainty analysis. Two types of coarse-resolution albedo datasets, from global land surface satellite(GLASS) and moderate-resolution imaging spectroradiometer(MODIS), are validated over the middle reaches of the Heihe River in China. The results indicate that the upscaled HJ(Huan Jing means environment in Chinese and this refers to a satellite constellation designed for environment and disaster monitoring by China) albedo, which was calibrated using field measurements, can provide accurate reference values for validating coarse-resolution satellite albedo products. However, the uncertainties in the upscaled HJ albedo should be estimated, and pixels with large uncertainties should be excluded from the validation process.  相似文献   

6.
本文研究了基于泊松小波径向基函数融合多代卫星测高及多源重力数据精化大地水准面模型的方法.分别以沿轨垂线偏差和大地水准面高高差作为卫星测高观测量,研究了使用不同类型测高数据对于大地水准面建模精度的影响.针对全球潮汐模型在浅水区域及部分开阔海域精度较低的问题,引入局部潮汐模型研究了不同潮汐模型对于大地水准面的影响.数值分析表明:相比于使用沿轨垂线偏差作为测高观测量,基于沿轨大地水准面高高差解算得到的大地水准面模型的精度更高,特别是在海域区域,其精度提高了2.3cm.由于使用沿轨大地水准面高高差作为测高观测量削弱了潮汐模型长波误差的影响,采用不同潮汐模型对大地水准面解算的影响较小.总体而言,船载重力及测高观测数据在海洋重力场的确定中呈现互补性关系,联合两类重力场观测量可以提高局部重力场的建模精度.  相似文献   

7.
Free-Air Anomalies (FAA) for the Norwegian marine area including some parts of the North Sea, the Norwegian Sea and the Barents Sea are computed from satellite altimetry data. A total of 84 cycles of ERS2 along-track data, 25 cycles of ENVISAT along-track data and high density ERS1 data during its geodetic mission are used. The new geopotential model from the Gravity Recovery and Climate Experiment (GRACE) mission, GGM02S (Tapely et al., 2005) is used to compute the long wavelength contributions of the geoid and the FAA. To correct data for mean dynamic topography, the available Levitus climatology model (Levitus and Boyer, 1994) is used. Corrected data are then used to compute along-track gradients in each cycle-pass to suppress the orbital and the atmospheric errors below the noise level of the altimeter. Resulted gradients are then stacked and the east-west and the north-south components of the deflection of verticals are computed where ascending and descending tracks meet each other. Finally, the inverse Vening-Meinesz formula is implemented on the gridded deflections to compute FAA. Results are then compared with available marine and airborne data. Standard deviations of ± 4.301 and ± 6.159 mGal in comparison with airborne and marine FAA were achieved. Thereafter, the derived anomalies are combined with marine and airborne FAA together with the land FAA to compute a fine resolution geoid for Norway and the surrounding marine areas. This geoid is evaluated over sea and land with the synthetic geoid (the geoid derived from the mean sea surface by subtracting the mean dynamic topography) and Global Positioning System (GPS)-levelling and the standard deviations of the differences are ± 20.9 and ± 12.8 cm respectively. ali.soltanpour@ntnu.no, hossein.nahavandchi@ntnu.no, kourosh.ghazavi@ntnu.no  相似文献   

8.
This paper proposes a new orientation to address the problem of hydrological model calibration in ungauged basin. Satellite radar altimetric observations of river water level at basin outlet are used to calibrate the model, as a surrogate of streamflow data. To shift the calibration objective, the hydrological model is coupled with a hydraulic model describing the relation between streamflow and water stage. The methodology is illustrated by a case study in the Upper Mississippi Basin using TOPEX/Poseidon (T/P) satellite data. The generalized likelihood uncertainty estimation (GLUE) is employed for model calibration and uncertainty analysis. We found that even without any streamflow information for regulating model behavior, the calibrated hydrological model can make fairly reasonable streamflow estimation. In order to illustrate the degree of additional uncertainty associated with shifting calibration objective and identifying its sources, the posterior distributions of hydrological parameters derived from calibration based on T/P data, streamflow data and T/P data with fixed hydraulic parameters are compared. The results show that the main source is the model parameter uncertainty. And the contribution of remote sensing data uncertainty is minor. Furthermore, the influence of removing high error satellite observations on streamflow estimation is also examined. Under the precondition of sufficient temporal coverage of calibration data, such data screening can eliminate some unrealistic parameter sets from the behavioral group. The study contributes to improve streamflow estimation in ungauged basin and evaluate the value of remote sensing in hydrological modeling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Approximately nine-year data from ERS1, ERS2 and TOPEX/POSEIDON (T/P) satellite altimetry missions have been used for the recovery of gravity anomalies over the Black Sea. The Corrected Sea Surface Height product of Aviso/Altimetry has been proven to be homogeneous after a cross-over adjustment. The Least Squares Collocation method was applied in a so-called remove-restore procedure. The residual geoid heights, obtained by subtracting EGM96 geoid heights from cross-over adjusted sea surface heights, were inverted to recover residual gravity anomalies in a grid structure over the Black Sea. Finally, EGM96 free air gravity anomalies were added to the predicted residual gravity anomalies to obtain the free air gravity anomalies. In order to check the consistency with respect to an external source, these computed free air gravity anomalies were compared to ship gravity observations, and to alternative satellite altimetry derived gravity anomalies. Comparisons with the observed gravity data yielded that external consistency of the gravity anomalies computed in this study is about 3 mGal for individual ship tracks. Overall external consistency in the test area is 4.8 mGal. Comparison with other satellite altimetry derived gravity anomalies presented a good agreement.  相似文献   

10.
 Mapping the mesoscale surface velocity stream function by combining estimates of surface height from satellite altimetry and surface currents from sequential infrared (sea-surface temperature) imagery using optimal interpolation is described. Surface currents are computed from infrared images by the method of maximum cross-correlations (MCC) and are combined with altimeter sea-level anomaly data from the TOPEX/Poseidon and ERS satellites. The analysis method was applied to 6 years of data from the East Australian Current region. The covariance of velocity and sea-level data is consistent with the statistical assumptions of homogeneous, isotropic turbulence, with typical length scales of order 220 km and time scales of 10 days in this region. Augmenting the analysis of altimeter data with MCC velocity observations improves the resolution of the surface currents, especially near the Australian coast, and demonstrates that the two data sources provide consistent and complementary observations of the surface mesoscale circulation. The volume of MCC data is comparable to that from a satellite altimeter, but with a more variable distribution of spatial and temporal resolution. In concert with altimetry, satellite radiometer velocimetry represents a technique useful for retrospective analysis of currents from high-resolution satellite radiometer data-sets. Received: 3 July 2001 / Accepted: 16 November 2001  相似文献   

11.
Active microwave remote sensing observations of backscattering, such as C‐band vertically polarized synthetic aperture radar (SAR) observations from the second European remote sensing (ERS‐2) satellite, have the potential to measure moisture content in a near‐surface layer of soil. However, SAR backscattering observations are highly dependent on topography, soil texture, surface roughness and soil moisture, meaning that soil moisture inversion from single frequency and polarization SAR observations is difficult. In this paper, the potential for measuring near‐surface soil moisture with the ERS‐2 satellite is explored by comparing model estimates of backscattering with ERS‐2 SAR observations. This comparison was made for two ERS‐2 overpasses coincident with near‐surface soil moisture measurements in a 6 ha catchment using 15‐cm time domain reflectometry probes on a 20 m grid. In addition, 1‐cm soil moisture data were obtained from a calibrated soil moisture model. Using state‐of‐the‐art theoretical, semi‐empirical and empirical backscattering models, it was found that using measured soil moisture and roughness data there were root mean square (RMS) errors from 3·5 to 8·5 dB and r2 values from 0·00 to 0·25, depending on the backscattering model and degree of filtering. Using model soil moisture in place of measured soil moisture reduced RMS errors slightly (0·5 to 2 dB) but did not improve r2 values. Likewise, using the first day of ERS‐2 backscattering and soil moisture data to solve for RMS surface roughness reduced RMS errors in backscattering for the second day to between 0·9 and 2·8 dB, but did not improve r2 values. Moreover, RMS differences were as large as 3·7 dB and r2 values as low as 0·53 between the various backscattering models, even when using the same data as input. These results suggest that more research is required to improve the agreement between backscattering models, and that ERS‐2 SAR data may be useful for estimating fields‐scale average soil moisture but not variations at the hillslope scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
High‐altitude inland lakes in High Mountain Asia (HMA) are key indicators to climate change and variability as a result of mostly closed watersheds and minimal disturbance by human activities. However, examination of the spatial and temporal pattern of lake changes, especially for water‐level variations, is usually limited by poor accessibility of most lakes. Recently, satellite altimeters have demonstrated their potential to monitor water level changes of terrestrial water bodies including lakes and rivers. By combining multiple satellite altimetry data provided by the Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) and Geoscience Laser Altimeter System (GLAS) instrument on the NASA Ice, Cloud and land Elevation satellite (ICESat), this study examined water level changes of typical lakes in HMA at a longer timescale (in the 1990s and 2000s) compared with earlier studies on Tibetan lakes. Cross‐evaluation of the radar altimetry data from LEGOS and laser altimetry data from ICESat/GLAS shows that they were in good agreement in depicting inter‐annual, seasonal and abrupt changes of lake level. The long‐term altimetry measurements reveal that water‐level changes of the 18 lakes showed remarkable spatial and temporal patterns that were characterized by different trends, onsets of rapid rises and magnitudes of inter‐annual variations for different lakes. During the study period, lakes in the central and northern HMA (15 lakes) showed a general growth tendency, while lakes in South Tibet (three lakes) showed significant shrinking tendency. Lakes in Central Tibet experienced rapid and stable water‐level rises around mid‐1990s followed by slowing growth rates after 2006. In contrast, the water‐level rises of lakes in the northern and north‐eastern Tibetan Plateau were characterized by abrupt increases in specific years rather than gradual growth. Meteorological data based on station observations indicate that the annual changes of water level showed strongly correlated with precipitation and evaporation but may not evidently related to the glacier melting induced by global warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The resolution and accuracy of digital elevation models (DEMs) can affect the hydraulic simulation results for predicting the effects of glacial lake outburst floods (GLOFs). However, for the Tibetan Plateau, high‐quality DEM data are often not available, leaving researchers with near‐global, freely available DEMs, such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) and the Shuttle Radar Topography Mission data (SRTM) for hydraulic modelling. This study explores the suitability of these two freely available DEMs for hydraulic modelling of GLOFs. Our study focused on the flood plain of a potentially dangerous glacial lake in southeastern Tibet, to evaluate the elevation accuracy of ASTER GDEM and SRTM, and their suitability for hydraulic modelling of GLOFs. The elevation accuracies of ASTER GDEM and SRTM were first validated against field global position system (GPS) survey points, and then evaluated with reference to the relatively high precision of 1:50 000 scale DEM (DEM5) constructed from aerial photography. Moreover, the DEM5, ASTER GDEM and SRTM were used as basic topographic data to simulate peak discharge propagation, as well as flood inundation extent and depth in the Hydrologic Engineering Center's River Analysis System one‐dimensional hydraulic model. Results of the three DEM predictions were compared to evaluate the suitability of ASTER GDEM and SRTM for GLOF hydraulic modelling. Comparisons of ASTER GDEM and SRTM each with DEM5 in the flood plain area show root‐mean‐square errors between the former two as ± 15·4 m and between the latter two as ± 13·5 m. Although SRTM overestimates and ASTER GDEM underestimates valley floor elevations, both DEMs can be used to extract the elevations of required geometric data, i.e. stream centre lines, bank lines and cross sections, for flood modelling. However, small errors still exist in the cross sections that may influence the propagation of peak discharge. The flood inundation extent and mean water depths derived from ASTER GDEM predictions are only 2·2% larger and 2·3‐m deeper than that of the DEM5 predictions, whereas the SRTM yields a flood zone extent 6·8% larger than the DEM5 prediction and a mean water depth 2·4‐m shallower than the DEM5 prediction. The modelling shows that, in the absence of high‐precision DEM data, ASTER GDEM or SRTM DEM can be relied on for simulating extreme GLOFs in southeast Tibet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
15.
We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.  相似文献   

16.
In this paper, three satellite derived precipitation datasets (TRMM, CMORPH, PERSIANN) are used to drive the Hillslope River Routing (HRR) model in the Congo Basin. The precipitation data are compared spatially and temporally in two forms: (1) precipitation magnitudes, and (2) resulting streamflow and water storages. Simulated streamflow is assessed using historical monthly discharge data from in situ stream gauges and recent stage data based on water surface elevations derived from ENVISAT radar altimetry data. Simulated total water storage is assessed using monthly storage change values derived from GRACE data. The results show that the three precipitation datasets vary significantly in terms of magnitudes but generally produce a reasonable hydrograph throughout much of the basin, with the exception of the equatorial regions of the watershed. The satellite datasets provide unreasonably high values for specific periods (e.g. all three in Oct–Nov; only CMORPH and PERSIANN in Mar–Apr) in the equatorial regions. Overall, TRMM (3B42) provides the best spatial and temporal distributions and magnitudes or rainfall based on the assessment measures used here. Both CMORPH and PERSIANN tend to overestimate magnitudes, especially in the equatorial regions of the Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
During the last two decades, remote sensing data have led to tremendous progress in advancing flood inundation modelling. In particular, low‐cost space‐borne data can be invaluable for large‐scale flood studies in data‐scarce areas. Various satellite products yield valuable information such as land surface elevation, flood extent and water level, which could potentially contribute to various flood studies. An increasing number of research studies have been dedicated to exploring those low‐cost data towards building, calibration and evaluation, and remote‐sensed information assimilation into hydraulic models. This paper aims at reviewing these recent scientific efforts on the integration of low‐cost space‐borne remote sensing data with flood modelling. Potentials and limitations of those data in flood modelling are discussed. This paper also introduces the future satellite missions and anticipates their likely impacts in flood modelling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Accurate field data have been collected along the Febbraro River (central Italian Alps) during quasi‐steady, low‐flow conditions to investigate the spatial variations of hydraulic and geomorphologic quantities potentially affecting resistance to flow. Detailed uncertainty analysis and weighted least‐squares fitting of simple power function relationships to field‐derived data are carried out to identify possible interdependencies between observed variables. Mean flow velocity is found to depend on water‐surface slope, bed material particle size, and upstream drainage area, whereas its dependence on hydraulic depth appears less susceptible to quantification. Upstream drainage area is found to explain the variations of hydraulic depth, water‐surface slope, Gauckler–Strickler conductance coefficient, and (although less significantly) flow discharge. Specifically, a highly significant positive dependence of the Gauckler–Strickler conductance coefficient on the upstream drainage area is found to exist, although anomalies in the variations of hydraulic depth and flow discharge are observed along the stream. The combined use of uncertainty analysis, hydraulic equations, and geomorphological relationships allows a possible characterization of resistance to flow along a steep Alpine stream and, perhaps more importantly, provides useful guidelines for future investigative efforts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The effects of climate change have a substantial influence on the extremely vulnerable hydrologic environment of the Tibetan Plateau. The estimation of alpine inland lake water storage variations is essential to modeling the alpine hydrologic process and evaluating water resources. Due to a lack of historical hydrologic observations in this remote and inaccessible region, such estimations also fill a gap in studies on the continuous inter‐annual and seasonal changes in the inland lake water budget. Using Lake Siling Co as a case study, we derived a time‐series of lake surface extents from MODIS imagery, and scarce lake water level data from the satellite altimetry of two sensors (ICESat/GLAS and ENVISAT RA‐2) between 2001 and 2011. Then, based on the fact that the rise in lake water levels is tightly dependent on the expansion of the lake extent, we established an empirical model to simulate a continuous lake water level dataset corresponding to the lake area data during the lake's unfreezing period. Consequently, from three dimensions, the lake surface area, water level and water storage variations consistently revealed that Lake Siling Co exhibited a dramatic trend to expand, particularly from 2001 to 2006. Based on the statistical model and lake area measurements from Landsat images since 1972, the extrapolated lake water level and water storage indicate that the lake has maintained a continual expansion process and that the cumulative water storage variations during 1999–2011 account for 66.84% of the total lake water budget (26.87 km3) from 1972 to 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号