首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The nature of strong martian crustal field sources is investigated by mapping and modeling of Mars Global Surveyor magnetometer data near Apollinaris Patera, a previously proposed volcanic source, supplemented by large-scale correlative studies. Regional mapping yields evidence for positive correlations of orbital anomalies with both Apollinaris Patera and Lucus Planum, a nearby probable extrusive pyroclastic flow deposit that is mapped as part of the Medusae Fossae Formation. Iterative forward modeling of the Apollinaris Patera magnetic anomaly assuming a source model consisting of one or more uniformly magnetized near-surface disks indicates that the source is centered approximately on the construct with a scale size several times larger and comparable to that of the Apollinaris Patera free-air gravity anomaly. A significantly lower rms deviation is obtained using a two-disk model that favors a concentration of magnetization near the construct itself. Estimates for the dipole moment per unit area of the Lucus Planum source together with maximum thicknesses of ∼3 km based on topographic and radar sounding data lead to an estimated minimum magnetization intensity of ∼50 A/m within the pyroclastic deposits. Intensities of this magnitude are similar to those obtained experimentally for Fe-rich Mars analog basalts that cooled in an oxidizing (high fO2) environment in the presence of a strong (?10 μT) surface field. Further evidence for the need for an oxidizing environment is provided by a broad spatial correlation of the locations of phyllosilicate exposures identified to date using Mars Express OMEGA data with areas containing strong crustal magnetic fields and valley networks in the Noachian-aged southern highlands. This indicates that the presence of liquid water, which is a major crustal oxidant, was an important factor in the formation of strong magnetic sources. The evidence discussed here for magnetic sources associated with relatively young volcanic units suggests that a martian dynamo existed during the late Noachian/early Hesperian, after the last major basin-forming impacts and the formation of the northern lowlands.  相似文献   

2.
Maps of the vector components of the Mars crustal magnetic field are constructed at the mapping altitude (360 to 410 km) using a selected set of data obtained with the Mars Global Surveyor magnetometer during 2780 orbits of the planet in 1999. Forward modeling calculations are then applied to six relatively strong and isolated, dominantly dipolar, magnetic anomalies for the primary purpose of estimating bulk directions of magnetization. Assuming that the magnetizing field was a (dipolar) core dynamo field centered in the planet, paleomagnetic pole positions are calculated for the six primary source bodies together with that for a seventh anomaly analyzed earlier. In agreement with several previous studies, it is found that six of the seven pole positions are clustered in what is now the northern lowlands in a region centered northwest of Olympus Mons (mean pole position: 34°±10° N, 202°±58° E). Assuming that the dynamo dipole moment vector was approximately parallel to the rotation axis, the modeling results therefore suggest a major reorientation of Mars relative to its rotation axis after magnetization was acquired. Such a reorientation may have been stimulated by internal mass redistributions associated with the formation of the northern lowlands and Tharsis, for example. A comparison of the mean paleo (magnetic) equator to the global distribution of crustal fields shows that magnetic anomalies tend to occur at low paleolatitudes. The same appears to be true for the Noachian-aged valley networks, which exhibit a broad spatial correlation with the magnetic anomalies. A possible interpretation is that the formation of magnetic anomalies and the valley networks was favored in the tropics where melting of water ice and snow was a stronger source of both surface valley erosion and groundwater recharge during the earliest history of the planet. This would be consistent with models in which hydrothermal alteration of crustal rocks played a role in producing the unusually strong martian magnetic anomalies.  相似文献   

3.
D. Ravat 《Icarus》2011,214(2):400-412
Using model studies, the total gradient (TG) of the Z-component magnetic field is shown to be a useful quantity for delineating sources of satellite-altitude magnetic anomalies; this field is used to constrain the location and lateral boundaries of sources of high amplitude magnetic anomalies of southern highlands of Mars. The TG field suggests two parallel linear and oppositely magnetized sources of 1000 and 1800 km length separated by 1000 km of region of intervening non-parallel sources. The simplest interpretation of the long, linear features is that they are zones of multitudinous crustal scale dikes formed in separate episodes of rifting, and not features associated with the mechanism of seafloor spreading. Forward modeling with uniformly magnetized sources suggests that magnetizations of the order of 10-50 A/m (40 km thickness) over ∼100 km width in the case of the southern source and of 12.5-27.5 A/m (40 km thickness) and ∼200 km width for the northern source are necessary to explain the Z-component amplitudes and features of the TG field. If the crustal magnetization on Mars were to be distributed fractally as on Earth, magnetizations matching the largest amplitude features on Mars may be spatially correlated from a 50-100 km distance range (β ∼ 3) to approaching nearly uniform magnetization (β ∼ 5) values. To keep magnetization intensity as small as possible, the higher end of β values are preferred, whereas, small amplitude anomaly features could be generated from sources with β ∼ 3. Many of the Mars anomaly features could be coalescence effects similar to the coalescence of anomaly features observed on http://icarus.cornell.edu/information/keywords.html.Earth.  相似文献   

4.
The heavily-cratered southern hemisphere of Mars encompasses the planet’s strongest, most widespread magnetization. Our study concentrates on this magnetized region in the southern hemisphere within 40° of latitude 40°S, longitude 180°W. First we rotate the coordinates to position the center at −40°, 180° and treat these new latitudes and longitudes as if they were Cartesian coordinates. Then, using an ordinary two-dimensional Fourier analysis for downward continuation, the MGS (MAG/ER) magnetic field data at satellite mapping elevation of ∼400 km are extrapolated to 100 km, sources are estimated and used to model the fields. Quantitative comparison of the downward continued field with the aerobraking field for bins having angular deviation within ±30° gives correlation of .947, .868, and .769 for the components, respectively. This agreement of the fields may result from most of the power in the magnetization resting in wavelengths ∼400 km, with comparatively little at ∼100 km. Over this region, covering nearly an octant of the planet, just a dozen sources can account for 94% of the variance of the magnetic field at the surface. In these models for the field an obvious asymmetry in polarity exists, with majority of the sources being positive. The locations of strongest surface magnetization appear to be near - but not actually within - ancient multi-ringed basins. We test the likelihood of this association by comparing the observed sources found within and near basins for two alternative basin location scenarios with random distributions. For both alternatives we find the observed distributions to be low-probability occurrences. If contemporaneous, this would establish that Mars’ magnetic field extended to the time of impacts causing these basins.  相似文献   

5.
The current morphology of the martian lithospheric magnetic field results from magnetization and demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the magnetization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a careful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area created by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude. For a single-impact event, the maximum magnetic field anomaly associated with a crater located over the magnetic pole is maximum above the crater. A 200-km diameter crater presents a close-to-1-nT magnetic field anomaly at 400-km altitude, while a 100-km diameter crater has a similar signature at 200-km altitude. Second, we statistically study the 400-km altitude Mars Global Surveyor magnetic measurements modelled locally over the visible impact craters. This approach offers a local estimate of the confidence to which the magnetic field can be computed from real measurements. We conclude that currently craters down to a diameter of 200 km can be characterized. There is a slight anti-correlation of −0.23 between magnetic field intensity and impact crater diameters, although we show that this result may be fortuitous. A complete low-altitude magnetic field mapping is needed. New data will allow predicted weak anomalies above craters to be better characterized, and will bring new constraints on the timing of the martian dynamo and on Mars’ evolution.  相似文献   

6.
The technique of electron reflectometry, a method for remote estimation of planetary magnetic fields, is expanded from its original use of mapping crustal magnetic fields at the Moon to achieving the same purpose at Mars, where the presence of a substantial atmosphere complicates matters considerably. The motion of solar wind electrons, incident on the martian atmosphere, is considered in detail, taking account of the following effects: the electrons' helical paths around the magnetic field lines to which they are bound, the magnetic mirror force they experience due to converging field lines in the vicinity of crustal magnetic anomalies, their acceleration/deceleration by electrostatic potentials, their interactions with thermal plasma, their drifts due to magnetic field line curvature and perpendicular electric fields and their scattering off, and loss of energy through a number of different processes to, atmospheric neutrals. A theoretical framework is thus developed for modeling electron pitch angle distributions expected when a spacecraft is on a magnetic field line which is connected to both the martian crust and the interplanetary magnetic field. This framework, along with measured pitch angle distributions from the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) experiment, can be used to remotely measure crustal magnetic field magnitudes and atmospheric neutral densities at ∼180 km above the martian datum, as well as estimate average parallel electric fields between 200 and 400 km altitude. Detailed analysis and full results, concerning the crustal magnetic field and upper thermospheric density of Mars, are left to two companion papers.  相似文献   

7.
J.S. Halekas  D.A. Brain 《Icarus》2010,206(1):64-73
We present the results of the first systematic survey of current sheets encountered by Mars Global Surveyor in its ∼400 km mapping orbit. We utilize an automated procedure to identify over 10,000 current sheet crossings during the ∼8 year mapping mission. The majority of these lie on the nightside and in the polar regions, but we also observe over 1800 current sheets at solar zenith angle <60°. The distribution and orientation of current sheets and their dependence on solar wind drivers suggests that most magnetotail current sheets have a local induced magnetospheric origin caused by magnetic field draping. On the other hand, most current sheets observed on the day side likely result from solar wind discontinuities advected through the martian system. However, the clustering of low altitude dayside current sheet crossings around the perimeters of strongly magnetized crustal regions, and the smaller than expected rotations in the IMF draping direction, suggest that crustal magnetic fields may also play an indirect role in their formation. The apparent thicknesses of martian current sheets, and the characteristics of electrons observed in and around the current sheets, suggest one of two possibilities. Martian current sheets at low altitudes are either stationary, with thicknesses of a few hundred km and currents carried by low energy (<10 eV) electrons, or they move at tens of km/s, with thicknesses of a few thousand km and currents carried by ions.  相似文献   

8.
We apply improved kinetic modeling of electron transport in the martian thermosphere to fit pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER), together with appropriate filtering, binning, averaging and error correction techniques, to create the most reliable ER global map to date of crustal magnetic field magnitude at 185 km altitude, with twice the spatial resolution and considerably higher sensitivity to crustal fields than global maps of magnetic field components produced with MAG data alone. This map compares favorably to sparsely sampled dayside MAG data taken at similar altitudes, insofar as a direct comparison is meaningful. Using this map, we present two case studies. The first compares the magnetic signatures of two highland volcanoes, concluding that the comparatively greater thermal demagnetization at Syrtis Major compared with Tyrrhena Patera is likely due to a higher ratio of intruded to extruded magmas. The second uses the map along with topographic data to compare the magnetic signatures and crater retention ages of the demagnetized Hellas impact basin and magnetized Ladon impact basin. From this comparison, we determine that the martian global dynamo magnetic field went from substantial to very weak or nonexistent in the absolute model age time interval 4.15±0.05 to 4.07±0.05 Ga ago.  相似文献   

9.
We present estimates of the day-side ionospheric conductivities at Mars based on magnetic field measurements by Mars Global Surveyor (MGS) at altitudes down to ∼100 km during aerobraking orbits early in the mission. At Mars, the so-called ionospheric dynamo region, where plasma/neutral collisions permit electric currents perpendicular to the magnetic field, lies between 100 and 250 km altitude. We find that the ionosphere is highly conductive in this region, as expected, with peak Pedersen and Hall conductivities of 0.1-1.5 S/m depending on the solar illumination and induced magnetospheric conditions. Furthermore, we find a consistent double peak pattern in the altitude profile of the day-side Pedersen conductivity, similar to that on Titan found by Rosenqvist et al. (2009). A high altitude peak, located between 180 and 200 km, is equivalent to the terrestrial peak in the lower F-layer. A second and typically much stronger layer of Pedersen conductivity is observed between 120 and 130 km, which is below the Hall conductivity peak at about 130-140 km. In this altitude region, MGS finds a sharp decrease in induced magnetic field strength at the inner magnetospheric boundary, while the day-side electron density is known to remain high as far down as 100 km. We find that such Titan-like behaviour of the Pedersen conductivity is only observed under regions of strongly draped magnetospheric field-lines, and negligible crustal magnetic anomalies below the spacecraft. Above regions of strong crustal magnetic anomalies, the Pedersen conductivity profile becomes more Earth-like with one strong Pedersen peak above the Hall conductivity peak. Here, both conductivities are 1-2 orders of magnitude smaller than the above only weakly magnetised crustal regions, depending on the strength of the crustal anomaly field at ionospheric altitudes. This nature of the Pedersen conductivity together with the structured distribution of crustal anomalies all over the planet should give rise to strong conductivity gradients around such anomalies. Day-side ionospheric conductivities on Mars (in regions away from the crustal magnetic anomalies) and Titan seem to behave in a very similar manner when horizontally draped magnetic field-lines partially magnetise a sunlit ionosphere. Therefore, it appears that a similar double peak structure of strong Pedersen conductivity could be a more general feature of non-magnetised bodies with ionised upper atmospheres, and thus should be expected to occur also at other non-magnetised terrestrial planets like Venus or other planetary bodies within the host planet magnetospheres.  相似文献   

10.
More than 490 elliptical aerobraking and science phasing orbits made by Mars Global Surveyor (MGS) in 1997 and 1998 provide unprecedented coverage of the solar wind in the vicinity of the orbits of the martian moons Phobos and Deimos. We have performed a comprehensive survey of magnetic field perturbations in the solar wind to search for possible signatures of solar wind interaction with dust or gas escaping from the moons. A total of 1246 solar wind disturbance events were identified and their distribution was examined relative to Phobos, the Phobos orbit, and the Deimos orbit. We find that the spatial distribution of solar wind perturbations does not increase near or downstream of Phobos, Phobos’ orbit, or Deimos’ orbit, which would have been expected if there is significant outgassing or dust escape from the martian moons. Of the 1246 magnetic field perturbation events found in the MGS data set, 11 events were found within 2000 km of the Phobos orbit, while three events were found within 2000 km of the Deimos orbit. These events were analyzed in detail and found to likely have other causes than outgassing/dust escape from the martian moons. Thus we conclude that the amount of gas/dust escaping the martian moons is not significant enough to induce detectable magnetic field perturbations in the solar wind. In essence we have not found any clear evidence in the MGS magnetic field data for outgassing or dust escape from the martian moons.  相似文献   

11.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow “monoenergetic” cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O+2, CO+2, etc.) flow in essentially the same direction as the external sheath flow. This suggests that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuña et al. [Acuña, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to “hot spots” facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves.  相似文献   

12.
Details are presented of an improved technique to use atmospheric absorption of magnetically reflecting solar wind electrons to constrain neutral mass densities in the nightside martian upper thermosphere. The helical motion of electrons on converging magnetic field lines, through an extended neutral atmosphere, is modeled to enable prediction of loss cone pitch angle distributions measured by the Magnetometer/Electron Reflectometer (MAG/ER) experiment on Mars Global Surveyor at 400 km altitude. Over the small fraction of Mars' southern hemisphere (∼2.5%) where the permanent crustal magnetic fields are both open to the solar wind and sufficiently strong as to dominate the variable induced martian magnetotail field, spherical harmonic expansions of the crustal fields are used to prescribe the magnetic field along the electron's path, allowing least-squares fitting of measured loss cones, in order to solve for parameters describing the vertical neutral atmospheric mass density profile from 160 to 230 km. Results are presented of mass densities in the southern hemisphere at 2 a.m. LST at the mean altitude of greatest sensitivity, 180 km, continuously over four martian years. Seasonal variability in densities is largely explained by orbital and latitudinal changes in dayside insolation that impacts the nightside through the resulting thermospheric circulation. However, the physical processes behind repeatable rapid, late autumnal cooling at mid-latitudes and near-aphelion warming at equatorial latitudes is not fully clear. Southern winter polar warming is generally weak or nonexistent over several Mars years, in basic agreement with MGS and MRO accelerometer observations. The puzzling response of mid-latitude densities from 160° to 200° E to the 2001 global dust storm suggests unanticipated localized nightside upper thermospheric lateral and vertical circulation patterns may accompany such storms. The downturn of the 11-year cycle of solar EUV flux is likely responsible for lower aphelion densities in 2004 and 2006 (Mars years 27 and 28).  相似文献   

13.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   

14.
The dramatic growth and evolution of the 2001 martian global dust storm were captured using the Submillimeter Wave Astronomy Satellite (SWAS). While the lower and middle atmosphere (pressures greater than 50 μbar, up to ∼45 km altitude) showed rapid heating of up to 40 K, the average surface brightness temperature plummeted by ∼20 K at the peak of the storm. The storm appears to have had little impact on the global temperature structure at altitudes above ∼ 10 μbar (∼ 60 km).  相似文献   

15.
Magnetic component anomaly maps were made from five mapping cycles of the Mars Global Surveyor's magnetometer data. Our goal was to find and isolate positive and negative anomaly pairs which would indicate magnetization of a single source body. From these anomalies we could compute the direction of the magnetizing vector and subsequently the location of the magnetic pole existing at the time of magnetization. We found nine suitable anomaly pairs and from these we computed paleo-poles that were nearly equally divided between north, south and mid-latitudes. These results suggest that during the existence of the martian main magnetic field it experienced several reversals and excursions.  相似文献   

16.
We study the propagation of gravity waves in the martian atmosphere using a linearized one-dimensional full-wave model. Calculations are carried out for atmospheric parameters characteristic of Mars Orbiter Laser Altimeter (on Mars Global Surveyor MGS) observations of apparent gravity waves in high latitude clouds and MGS radio occultation measurements of temperature variations with height suggestive of gravity wave activity. Waves that reach the thermosphere produce fluctuations in density comparable in amplitude with the density variations detected in Mars Odyssey aerobraking data. Gravity waves of modest amplitude are found to deposit momentum and generate significant heating and cooling in the martian atmosphere. The largest heating and cooling effects occur in the thermosphere, at altitudes between about 130 and 150 km, with heating occurring at the lower altitudes and cooling taking place above.  相似文献   

17.
This study presents the latest results on the mesospheric CO2 clouds in the martian atmosphere based on observations by OMEGA and HRSC onboard Mars Express. We have mapped the mesospheric CO2 clouds during nearly three martian years of OMEGA data yielding a cloud dataset of ∼60 occurrences. The global mapping shows that the equatorial clouds are mainly observed in a distinct longitudinal corridor, at seasons Ls = 0-60° and again at and after Ls = 90°. A recent observation shows that the equatorial CO2 cloud season may start as early as at Ls = 330°. Three cases of mesospheric midlatitude autumn clouds have been observed. Two cloud shadow observations enabled the mapping of the cloud optical depth (τ = 0.01-0.6 with median values of 0.13-0.2 at λ = 1 μm) and the effective radii (mainly 1-3 μm with median values of 2.0-2.3 μm) of the cloud crystals. The HRSC dataset of 28 high-altitude cloud observations shows that the observed clouds reside mainly in the altitude range ∼60-85 km and their east-west speeds range from 15 to 107 m/s. Two clouds at southern midlatitudes were observed at an altitude range of 53-62 km. The speed of one of these southern midlatitude clouds was measured, and it exhibited west-east oriented speeds between 5 and 42 m/s. The seasonal and geographical distribution as well as the observed altitudes are mostly in line with previous work. The LMD Mars Global Climate Model shows that at the cloud altitude range (65-85 km) the temperatures exhibit significant daily variability (caused by the thermal tides) with the coldest temperatures towards the end of the afternoon. The GCM predicts the coldest temperatures of this altitude range and the season Ls = 0-30° in the longitudinal corridor where most of the cloud observations have been made. However, the model does not predict supersaturation, but the GCM-predicted winds are in fair agreement with the HRSC-measured cloud speeds. The clouds exhibit variable morphologies, but mainly cirrus-type, filamented clouds are observed (nearly all HRSC observations and most of OMEGA observations). In ∼15% of OMEGA observations, clumpy, round cloud structures are observed, but very few clouds in the HRSC dataset show similar morphology. These observations of clumpy, cumuliform-type clouds raise questions on the possibility of mesospheric convection on Mars, and we discuss this hypothesis based on Convective Available Potential Energy calculations.  相似文献   

18.
Stephen D. Eckermann  Jun Ma 《Icarus》2011,211(1):429-442
Using a Curtis-matrix model of 15 μm CO2 radiative cooling rates for the martian atmosphere, we have computed vertical scale-dependent IR radiative damping rates from 0 to 200 km altitude over a broad band of vertical wavenumbers ∣m∣ = 2π(1-500 km)−1 for representative meteorological conditions at 40°N and average levels of solar activity and dust loading. In the middle atmosphere, infrared (IR) radiative damping rates increase with decreasing vertical scale and peak in excess of 30 days−1 at ∼50-80 km altitude, before gradually transitioning to scale-independent rates above ∼100 km due to breakdown of local thermodynamic equilibrium. We incorporate these computed IR radiative damping rates into a linear anelastic gravity-wave model to assess the impact of IR radiative damping, relative to wave breaking and molecular viscosity, in the dissipation of gravity-wave momentum flux. The model results indicate that IR radiative damping is the dominant process in dissipating gravity-wave momentum fluxes at ∼0-50 km altitude, and is the dominant process at all altitudes for gravity waves with vertical wavelengths ?10-15 km. Wave breaking becomes dominant at higher altitudes only for “fast” waves of short horizontal and long vertical wavelengths. Molecular viscosity plays a negligible role in overall momentum flux deposition. Our results provide compelling evidence that IR radiative damping is a major, and often dominant physical process controlling the dissipation of gravity-wave momentum fluxes on Mars, and therefore should be incorporated into future parameterizations of gravity-wave drag within Mars GCMs. Lookup tables for doing so, based on the current computations, are provided.  相似文献   

19.
Evidence of volcano-ground ice interactions on Mars can provide important constraints on the timing and distribution of martian volcanic processes and climate characteristics. Northwest of the Elysium Rise is Hrad Vallis, a ∼370 m deep, 800 km long sinuous valley that begins in a source region at 34° N, 218° W. Flanking both sides of the source region is a lobate deposit that extends ∼50 km perpendicular from the source and is an average of ∼40 m thick. Previous studies have suggested the formation of the Hrad Vallis source region was the result of explosive magma-ice interaction and that the lobate deposit is a mudflow; here we use newly available MOLA, MOC, and THEMIS data to investigate the evidence supporting this hypothesis. Within the lobate deposit we have identified 12 craters with thermal infrared signatures and morphologies that are distinct from any other craters or depressions in the region. The thermally distinct craters are distinguished by their cool interiors surrounded by warm ejecta in the nighttime THEMIS IR data and warm interiors surrounded by cool ejecta in the daytime THEMIS IR data. The craters are typically 1100-1800 m in diameter (one crater is ∼2300 m across) and 30-40 m deep, but may be up to 70 m. The craters are typically circular and have central depressions (several with interior dune fill) surrounded by ∼1 to >6 concentric fracture sets. The distribution of the craters and their morphology suggests that they are likely the result of the interaction between a hot mudflow and ground ice.  相似文献   

20.
The Electron Spectrometer (ELS) instrument of the ASPERA-3 package on the Mars Express satellite has recorded photoelectron energy spectra up to apoapsis (∼10,000 km altitude). The characteristic photoelectron shape of the spectrum is sometimes seen well above the ionosphere in the evening sector across a wide range of near-equatorial latitudes. Two numerical models are used to analyze the characteristics of these high-altitude photoelectrons. The first is a global, multi-species MHD code that produces a 3-D representation of the magnetic field and bulk plasma parameters around Mars. It is used here to examine the possibility of magnetic connectivity between the high-altitude flanks of the martian ionosheath and the subsolar ionosphere. It is shown that some field lines in this region are draped interplanetary magnetic lines while others are open field lines (connected to both the IMF and the crustal magnetic field sources). The second model is a kinetic electron transport model that calculates the electron velocity space distribution along a selected, non-uniform, magnetic field line. It is used here to simulate the high-altitude ELS measurements. It is shown that the photoelectrons are essentially confined to the source cone, as governed by magnetic field inhomogeneity along the field line. Reasonable agreement is shown between the data and the model results, and a method is demonstrated for inferring properties of the local and photoelectron source region magnetic field from the ELS measurements. Specifically, the number of sectors in which photoelectrons are measured is a function of the magnetic field intensity ratio and the field's angle with respect to the detector plane. In addition, the sector of the photoelectron flux peak is a function of the magnetic field azimuthal angle in the detector plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号