首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The hypothesis of a lunar cataclysmic cratering episode between 3.8 and 3.9 Gyr ago lacks proof. Its strongest form proposes no cratering before about 4.0 Gyr, followed by catastrophic formation of most lunar craters and basins in >200 Myr. The premise that “zero impact melts implies zero impacts” is disproved by data from asteroids, on which early collisions clearly occurred, but from which early impact melts are scarce. Plausible cataclysm models imply that any cataclysm should have affected the whole inner solar system, but among available lunar and asteroid impact melt and impact age resetting data, a narrow, strong 3.8–3.9 Gyr spike in ages is seen only in the region sampled by Apollo/Luna. Reported lunar meteorite data do not show the spike. Asteroid data show a broader, milder peak, spreading from about 4.2 to 3.5 Gyr. These data suggest either that the spike in Apollo impact melt ages is associated with unique lunar front side events, or that the lunar meteorites data represent different kinds of events than the Apollo/Luna data. Here, we develop an alternate “megaregolith evolution” hypothesis to explain these data. In this hypothesis, early impact melts are absent not because there were no impacts, but because the high rate of early impacts led to their pulverization. The model estimates survival halflives of most lunar impact melts prior to 4.1 Gyr at >100 Myr. After a certain time, Tcritical ?4.0 Gyr, impact melts began to survive to the present. The age distribution differences among impact melts and plutonic rocks are controlled by, and hold clues to, the history of regolith evolution and the relative depths of sequestration of impact melts versus plutonic rocks, both among lunar and asteroidal samples. Both the “zero cratering, then cataclysm” hypothesis and the “megaregolith evolution” hypothesis require further testing, especially with lunar meteorite impact melt studies.  相似文献   

2.
Quantin et al. [Quantin, C., Allemand, P., Mangold, N., Delacourt, C., 2004a. Icarus 172, 555-572] tabulated crater count data for 56 landslides along the walls of Valles Marineris. Under the assumption of a constant cratering rate after about 3 Gyr ago, as used in the 1999-2005 iterations of the crater chronology isochron system of Hartmann, and in the Hartmann and Neukum system, these data indicate a regularly increasing rate of landslides, which would be difficult to explain. We suggest that these data may support a decline in inner Solar System cratering rates by about a factor of 3 since 3 Gyr ago, not unlike predictions based on asteroid belt collision models. Such a decline is also supported by our review of data on lunar impact melts and glass spherules in a companion paper [Hartmann, W.K., Quantin, C., Mangold, N., 2007. Icarus 186, 11-23]. Such models produce not only a more uniform rate of landslides over the last 3 Gyr, but also a more uniform rate of resurfacing processes which also had an apparent increase under the assumption of a constant cratering rate.  相似文献   

3.
Preliminary measurements of craters and boulders have been made in various locations on Eros from images acquired during the first nine months of NEAR Shoemaker's orbital mission, including the October 2000 low altitude flyover. (We offer some very preliminary, qualitative analysis of later LAF images and very high-resolution images obtained during NEAR's landing on 12 February 2001). Craters on Eros >100 m diameter closely resemble the saturated crater population of Ida; Eros is more heavily cratered than Gaspra but lacks the saturated giant craters of Mathilde. These craters and the other large-scale geological features were formed over a duration of very roughly 2 Gyr while Eros was in the main asteroid belt, between the time when its parent body was disrupted and Eros was injected into an Earth-approaching orbit (probably tens of Myr ago). Saturation equilibrium had been expected to shape Eros' crater population down to very small sizes, as on the lunar maria. However, craters <200 m diameter are instead progressively depleted toward smaller sizes and are a factor of ∼200 below empirical saturation at diameters of 4 m. Conversely, boulders and positive relief features (PRFs) rise rapidly in numbers (differential power-law index ∼−5) and those <10 m in size dominate the landscape at high resolutions. The pervasive boulders and minimal craters on Eros is radically different from the lunar surface at similar scales. This may be partly explained by a major depletion of meter-scale projectiles in the asteroid belt (due to the Yarkovsky Effect: Bell 2001), which thus form few small craters and destroy few boulders. Additionally, the small size and low gravity of Eros may result in redistribution or loss of ejecta due to seismic shaking, thus preferentially destroying small craters formed in such regolith. Possibly Eros has only a patchy, thin regolith of mobile fines; the smaller PRFs may then reflect exposures of fractured bedrock or piles of large ejecta blocks, which might further inhibit formation of craters <10 m in size. Eros may well have been largely detached dynamically and collisionally from the main asteroid belt for the past tens of Myr, in which case its cratering rate would have dropped by two orders of magnitude, perhaps enhancing the relative efficacy of other processes that would normally be negligible in competition with cratering. Such processes include thermal creep, electrostatic levitation and redistribution of fines, and space weathering (e.g., bombardment by micrometeorites and solar wind particles). Combined with other small-body responses to impact cratering (e.g., greater widespread distribution of bouldery ejecta), such processes may also help explain the unexpected small-scale character of geology on Eros. If there was a recent virtual hiatus in cratering of Eros (during which only craters <∼300 m diameter would be expected to have formed), space weathering may have reached maturity, thus explaining Eros' remarkable spectral homogeneity compared with Ida.  相似文献   

4.
The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ∼5×10−4 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338-347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111-140]. Our results were constrained by the main belt's size-frequency distribution, the number of asteroid families produced by disruption events from diameter D>100 km parent bodies over the last 3-4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3±2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153-L156]. The post-accretion main belt population, in the form of diameter D?1000 km planetesimals, was likely to have been 160±40 times the current main belt's mass. This corresponds to 0.06-0.1 Earth masses, only a small fraction of the total mass thought to have existed in the main belt zone during planet formation. The remaining mass was most likely taken up by planetary embryos formed in the same region. Our results suggest that numerous D>200 km planetesimals disrupted early in Solar System history, but only a small fraction of their fragments survived the dynamical depletion event described above. We believe this may explain the limited presence of iron-rich M-type, olivine-rich A-type, and non-Vesta V-type asteroids in the main belt today. The collisional lifetimes determined for main belt asteroids agree with the cosmic ray exposure ages of stony meteorites and are consistent with the limited collisional evolution detected among large Koronis family members. Using the same model, we investigated the near-Earth object (NEO) population. We show the shape of the NEO size distribution is a reflection of the main belt population, with main belt asteroids driven to resonances by Yarkovsky thermal forces. We used our model of the NEO population over the last 3 Gyr, which is consistent with the current population determined by telescopic and satellite data, to explore whether the majority of small craters (D<0.1-1 km) formed on Mercury, the Moon, and Mars were produced by primary impacts or by secondary impacts generated by ejecta from large craters. Our results suggest that most small craters formed on these worlds were a by-product of secondary rather than primary impacts.  相似文献   

5.
The solid planets assembled 4.57 Gyr ago during a period of less than 100 Myr, but the bulk of the impact craters we see on the inner planets formed much later, in a narrow time interval between 3.8 and 3.9 Gyr ago, during the so-called late heavy bombardment (LHB). It is not certain what caused the LHB, and it has not been well known whether the impactors were comets or asteroids, but our present study lend support to the idea that it was comets. Due to the Earth’s higher gravity, the impactors will have hit the Earth with ∼twice the energy density that they hit the Moon, and the bombardment will have continued on Earth longer than on the Moon. All solid surface of the Earth will have been completely covered with craters by the end of the LHB.However, almost nothing of the Earth’s crust from even the end of this epoch, is preserved today. One of the very few remnants, though, is exposed as the Isua greenstone belt (IGB) and nearby areas in Western Greenland. During a field expedition to Isua, we sampled three types of metasedimentary rocks, deposited ∼3.8 billion years ago, that contain information about the sedimentary river load from larger areas of surrounding land surfaces (mica-schist and turbidites) and of the contemporaneous seawater (BIF). Our samples show evidence of the LHB impacts that took place on Earth, by an average of a seven times enrichment (150 ppt) in iridium compared to present-day ocean crust (20 ppt). The clastic sediments show slightly higher enrichment than the chemical sediments, which may be due to contamination from admixtures of mafic (proto-crustal) sources.We show that this enrichment is in agreement with the lunar cratering rate and a corresponding extraterrestrial LHB contribution to the Earth’s Hadean-Eoarchean crust, provided the bulk of the influx was cometary (i.e., of high velocity and low in CI abundance), but not if the impactors were meteorites (i.e. had velocities and abundances similar to present-day Earth-crossing asteroids). Our study is a first direct indication of the nature of the LHB impactors, and the first to find an agreement between the LHB lunar cratering rate and the Earth’s early geochemical record (and the corresponding lunar record). The LHB comets that delivered the iridium we see at Isua will at the same time have delivered the equivalent of a ∼1 km deep ocean, and we explain why one should expect a cometary ocean to become roughly the size of the Earth’s present-day ocean, not only in terms of depth but also in terms of the surface area it covers. The total impacting mass on the Earth during the LHB will have been ∼1000 tons/m2.  相似文献   

6.
Matija Ćuk 《Icarus》2012,218(1):69-79
The Moon has suffered intense impact bombardment ending at 3.9 Gyr ago, and this bombardment probably affected all of the inner Solar System. Basin magnetization signatures and lunar crater size-distributions indicate that the last episode of bombardment at about 3.85 Gyr ago was less extensive than previously thought. We explore the contribution of the primordial Mars-crosser population to early lunar bombardment. We find that Mars-crosser population initially decays with a 80-Myr half-life, with the long tail of survivors clustering on temporarily non-Mars-crossing orbits between 1.8 and 2 AU. These survivors decay with half-life of about 600 Myr and are progenitors of the extant Hungaria asteroid group in the same region. We estimate the primordial Mars-crosser population contained about 0.01–0.02 Earth masses. Such initial population is consistent with no lunar basins forming after 3.8 Gya and the amount of mass in the Hungaria group. As they survive longer and in greater numbers than other primordial populations, Mars-crossers are the best candidate for forming the majority of lunar craters and basins, including most of the Nectarian system. However, this remnant population cannot produce Imbrium and Orientale basins, which formed too late and are too large to be part of a smooth bombardment. We propose that the Imbrian basins and craters formed in a discrete event, consistent with the basin magnetization signatures and crater size-distributions. This late “impactor shower” would be triggered by a collisional disruption of a Vesta-sized body from this primordial Mars-crossing population (Wetherill, G.W. [1975]. Proc. Lunar Sci. Conf. 6, 1539–1561) that was still comparable to the present-day asteroid belt a 3.9 Gya. This tidal disruption lead to a short-lived spike in bombardment by non-chondritic impactors with a non-asteroidal size–frequency distribution, in agreement with available evidence. This body (“Wetherill’s object”) also uniquely matches the constraints for the parent body of mesosiderite meteorites. We propose that the present-day sources of mesosiderites are multi-km-sized asteroids residing in the Hungaria group, that have been implanted there soon after the original disruption of their parent 3.9 Gyr ago.  相似文献   

7.
Asteroid families are the byproducts of catastrophic collisions whose fragments form clusters in proper semimajor axis, eccentricity, and inclination space. Although many families have been observed in the main asteroid belt, only two very young families, Karin and Veritas, have well-determined ages. The ages of other families are needed, however, if we hope to infer information about their ejection velocity fields, space weathering processes, etc. In this paper, we developed a method that allows us to estimate the ages of moderately young asteroid families (approximately in between 0.1 and 1 Gyr). We apply it to four suitable cases—Erigone, Massalia, Merxia, and Astrid—and derive their likely ages and approximate ejection velocity fields. We find that Erigone and Merxia were produced by large catastrophic disruption events (i.e., parent body ?100 km) that occurred approximately 280 and 330 Myr ago, respectively. The Massalia family was likely produced by a cratering event on Asteroid (20) Massalia less than 200 Myr ago. Finally, the Astrid family, which was produced by the disruption of a 60-70 km asteroid, is 100-200 Myr old, though there is considerable uncertainty in this result. We estimate that the initial ejection velocities for these families were only a few tens of meters per second, consistent with numerical hydrocode models of asteroid impacts. Our results help to verify that asteroid families are constantly undergoing dynamical orbital evolution from thermal (Yarkovsky) forces and spin vector evolution from thermal (YORP) torques.  相似文献   

8.
Matija ?uk  Brett J. Gladman 《Icarus》2010,207(2):590-7225
Multiple impact basins formed on the Moon about 3.8 Gyr ago in what is known as the lunar cataclysm or Late Heavy Bombardment. Many workers currently interpret the lunar cataclysm as an impact spike primarily caused by main-belt asteroids destabilized by delayed planetary migration. We show that morphologically fresh (class 1) craters on the lunar highlands were mostly formed during the brief tail of the cataclysm, as they have absolute crater number density similar to that of the Orientale basin and ejecta blanket. The connection between class 1 craters and the cataclysm is supported by the similarity of their size-frequency distribution to that of stratigraphically-identified Imbrian craters. Majority of lunar craters younger than the Imbrium basin (including class 1 craters) thus record the size-frequency distribution of the lunar cataclysm impactors. This distribution is much steeper than that of main-belt asteroids. We argue that the projectiles bombarding the Moon at the time of the cataclysm could not have been main-belt asteroids ejected by purely gravitational means.  相似文献   

9.
The cratering history of main belt asteroid (2867) Steins has been investigated using OSIRIS imagery acquired during the Rosetta flyby that took place on the 5th of September 2008. For this purpose, we applied current models describing the formation and evolution of main belt asteroids, that provide the rate and velocity distributions of impactors. These models coupled with appropriate crater scaling laws, allow the cratering history to be estimated. Hence, we derive Steins’ cratering retention age, namely the time lapsed since its formation or global surface reset. We also investigate the influence of various factors—like bulk structure and crater erasing—on the estimated age, which spans from a few hundred Myrs to more than 1 Gyr, depending on the adopted scaling law and asteroid physical parameters. Moreover, a marked lack of craters smaller than about 0.6 km has been found and interpreted as a result of a peculiar evolution of Steins cratering record, possibly related either to the formation of the 2.1 km wide impact crater near the south pole or to YORP reshaping.  相似文献   

10.
P. Michel  D.P. O'Brien  S. Abe  N. Hirata 《Icarus》2009,200(2):503-513
In this paper, we study cratering and crater erasure processes and provide an age estimate for the near-Earth Asteroid (25143) Itokawa, the target of the mission Hayabusa, based on its crater history since the time when it was formed in the main belt by catastrophic disruption or experienced a global resetting event. Using a model which was applied to the study of the crater history of Gaspra, Ida, Mathilde and Eros [O'Brien, D.P., Greenberg, R., Richardson, J.E., 2006. Icarus 183, 79–92], we calculate the time needed to accumulate the craters on Itokawa's surface, taking into account several processes which can affect crater formation and crater erasure on such a low-gravity object, such as seismic shaking. We use two models of the projectile population and two scaling laws to relate crater diameter to projectile size. Both models of the projectile population provide similar results, and depending on the scaling law used, we find that the time necessary to accumulate Itokawa's craters was at least ∼75 Myr, and maybe as long as 1 Gyr. Moreover, using the same model and similar parameters (scaled accordingly), we provide a good match not only to Itokawa's craters, but also to those of Eros, which has also been imaged at high enough resolution to give crater counts in a similar size range to those on Itokawa. We show that, as for Eros, the lack of small craters on Itokawa is consistent with erasure by seismic shaking, although for Itokawa, the pronounced deficiency of the smallest craters (<10 m in diameter) requires another process or event in addition to just seismic shaking. A small body such as Itokawa is highly sensitive to specific events that may occur during its history. For example, the two parts of Itokawa, called head and body, may well have joined each other by a low-velocity impact within the last hundred thousand years [Scheeres, D.J., Abe, M., Yoshikawa, M., Nakamura, R., Gaskell, R.W., Abell, P.A., 2007. Icarus 188, 425–429]. In addition to providing an erasure mechanism for small craters, the proposed timescale of that event is consistent with the timescale necessary in our model to form the current, depleted population of just a few small (<10 m) craters on Itokawa, suggesting that it may be the explanation for the discrepancy between Itokawa's cratering record and that obtained from our equilibrium seismic shaking model. Other explanations for the depletion of the smallest craters on Itokawa, such as armoring by boulders lying on the surface, cannot be ruled out.  相似文献   

11.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

12.
Paleocratering of the Moon: Review of post-Apollo data   总被引:1,自引:0,他引:1  
As a result of the dating of lunar samples, we are in a position to utilize the lunar surface as a recorder of environmental conditions in the Earth-Moon neighborhood in the past. Plots of crater density vs rock age at different lunar landing sites can be used to date unexplored lunar provinces. These plots also demonstrate evolution in the population of planetesimals that struck the Moon. Prior to 4.1 aeons ago, the cratering rate on the Moon was at least 103 times the present rate, and the rate declined with a half-life less than 8×107 yr. During the interval from 4.1 to 3.2 aeons ago, the number of planetesimals showed an exponential decay with a half-life about 3×108 yr, corresponding to sweep-up of particles from solar orbits somewhat similar to those of Apollo asteroids. A more nearly constant cratering rate applied in the last three aeons. These data indicate that the Moon displays at least the final stages of an ancient accretion process; they also set certain conditions on possible capture processes relating to the Moon's origin. Pre-Apollo expectations that the Moon would provide a Rosetta Stone for interpreting solar system history and planet formation thus appear justified.Paper given at Philadelphia meeting of American Association for Advancement of Science, December, 1971.  相似文献   

13.
David A. Minton  Renu Malhotra 《Icarus》2010,207(2):744-7225
The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids with diameters in the current asteroid belt. In a numerical analysis of the long-term evolution of test particles in the main asteroid belt region, we find that the dynamical loss history of test particles from this region is well described with a logarithmic decay law. In our simulations the loss rate function that is established at persists with little deviation to at least . Our study indicates that the asteroid belt region has experienced a significant amount of depletion due to this dynamical erosion—having lost as much as ∼50% of the large asteroids—since 1 Myr after the establishment of the current dynamical structure of the asteroid belt. Because the dynamical depletion of asteroids from the main belt is approximately logarithmic, an equal amount of depletion occurred in the time interval 10-200 Myr as in 0.2-4 Gyr, roughly ∼30% of the current number of large asteroids in the main belt over each interval. We find that asteroids escaping from the main belt due to dynamical chaos have an Earth-impact probability of ∼0.3%. Our model suggests that the rate of impacts from large asteroids has declined by a factor of 3 over the last 3 Gyr, and that the present-day impact flux of objects on the terrestrial planets is roughly an order of magnitude less than estimates currently in use in crater chronologies and impact hazard risk assessments.  相似文献   

14.
Multiple large impact basins on the lunar nearside formed in a relatively-short interval around 3.8-3.9 Gyr ago, in what is known as the Lunar Cataclysm (LC; also known as Late Heavy Bombardment). It is widely thought that this impact bombardment has affected the whole Solar System or at least all the inner planets. But with non-lunar evidence for the cataclysm being relatively weak, a geocentric cause of the Lunar Cataclysm cannot yet be completely ruled out [Ryder, G., 1990. Eos 71, 313, 322-323]. In principle, late destabilization of an additional Earth satellite could result in its tidal disruption during a close lunar encounter (cf. [Asphaug, E., Agnor, C.B., Williams, Q., 2006. Nature 439, 155-160]). If the lost satellite had D>500 km, the resulting debris can form multiple impact basins in a relatively short time, possibly explaining the LC. Canup et al. [Canup, R.M., Levison, H.F., Stewart, G.R., 1999. Astron. J. 117, 603-620] have shown that any additional satellites of Earth formed together with (and external to) the Moon would be unable to survive the rapid initial tidally-driven expansion of lunar orbit. Here we explore the fate of objects trapped in the lunar Trojan points, and find that small lunar Trojans can survive the Moon's orbital evolution until they and the Moon reach 38 Earth radii, at which point they are destabilized by a strong solar resonance. However, the dynamics of Trojans containing enough mass to cause the LC (diameters >150 km) is more complex; we find that such objects do not survive the passage through a weaker solar resonance at 27 Earth radii. This distance was very likely reached by the Moon long before the LC, which seems to rule out the disruption of lunar Trojans as a cause of the LC.  相似文献   

15.
Abstract— All terrestrial planets, the Moon, and small bodies of the inner solar system are subjected to impacts on their surface. The best witness of these events is the lunar surface, which kept the memory of the impacts that it underwent during the last 3.8 Gyr. In this paper, we review the recent studies at the origin of a reliable model of the impactor population in the inner solar system, namely the near‐Earth object (NEO) population. Then we briefly expose the scaling laws used to relate a crater diameter to body size. The model of the NEO population and its impact frequency on terrestrial planets is consistent with the crater distribution on the lunar surface when appropriate scaling laws are used. Concerning the early phases of our solar system's history, a scenario has recently been proposed that explains the origin of the Late Heavy Bombardment (LHB) and some other properties of our solar system. In this scenario, the four giant planets had initially circular orbits, were much closer to each other, and were surrounded by a massive disk of planetesimals. Dynamical interactions with this disk destabilized the planetary system after 500–600 Myr. Consequently, a large portion of the planetesimal disk, as well as 95% of the Main Belt asteroids, were sent into the inner solar system, causing the LHB while the planets reached their current orbits. Our knowledge of solar system evolution has thus improved in the last decade despite our still‐poor understanding of the complex cratering process.  相似文献   

16.
David P. O’Brien 《Icarus》2009,203(1):112-118
The near-Earth Asteroids Eros and Itokawa show a pronounced lack of small (?100 m) craters, the vast majority of which were formed during their time in the main belt, and this has been cited as possible evidence that small (?10 m) impactors are efficiently removed from the main belt by the Yarkovsky effect. Using well-tested models for the evolution of the main-belt size distribution and the evolution of crater populations on asteroid surfaces, I show that a pronounced lack of small impactors would require size-dependent removal far stronger than can result from the Yarkovsky effect (or any other known process). Furthermore, such strong removal would lead to wavelike perturbations in the main-belt and near-Earth asteroid size distributions that are inconsistent with their observed size distributions, as well as the cratering records on asteroid surfaces. A more likely explanation is that processes on asteroid surfaces, such as seismic shaking, are responsible for erasing small craters after they form.  相似文献   

17.
S.J. Weidenschilling 《Icarus》2011,214(2):671-684
The present size frequency distribution (SFD) of bodies in the asteroid belt appears to have preserved some record of the primordial population, with an excess of bodies of diameter D ∼ 100 km relative to a simple power law. The survival of Vesta’s basaltic crust also implies that the early SFD had a shallow slope in the range ∼10-100 km. (Morbidelli, A., Bottke, W.F., Nesvorny, D., Levison, H.F. [2009]. Icarus 204, 558-573) were unable to produce these features by accretion from an initial population of km-sized planetesimals. They concluded that bodies with sizes in the range ∼100-1000 km and a SFD similar to the current population were produced directly from solid particles of sub-meter scale, without experiencing accretion through intermediate sizes. We present results of new accretion simulations in the primordial asteroid region. The requisite SFD can be produced from an initial population of planetesimals of sizes ?0.1 km, smaller than the usual assumption of km-sized bodies. The bump at D ∼ 100 km is produced by a transition from dispersion-dominated runaway growth to a regime dominated by Keplerian shear, before the formation of large protoplanetary embryos. Thus, accretion of the asteroids from an initial population of small (sub-km) planetesimals cannot be ruled out.  相似文献   

18.
Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400±200 Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.  相似文献   

19.
The fossilized size distribution of the main asteroid belt   总被引:1,自引:0,他引:1  
Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law . In contrast to previous efforts, we find our derived function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a “fossil” from this violent early epoch. We find that most diameter D?120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation events. The observed changes in the asteroid spin rate and lightcurve distributions near D∼100-120 km are likely to be a byproduct of this difference. Estimates based on our results imply the primordial main belt population (in the form of D<1000 km bodies) was 150-250 times larger than it is today, in agreement with recent dynamical simulations.  相似文献   

20.
Insights into collisional physics may be obtained by studying the asteroid belt, where large-scale collisions produced groups of asteroid fragments with similar orbits and spectra known as the asteroid families. Here we describe our initial study of the Karin cluster, a small asteroid family that formed 5.8±0.2 Myr ago in the outer main belt. The Karin cluster is an ideal ‘natural laboratory’ for testing the codes used to simulate large-scale collisions because the observed fragments produced by the 5.8-Ma collision suffered apparently only limited dynamical and collisional erosion. To date, we have performed more than 100 hydrocode simulations of impacts with non-rotating monolithic parent bodies. We found good fits to the size-frequency distribution of the observed fragments in the Karin cluster and to the ejection speeds inferred from their orbits. These results suggest that the Karin cluster was formed by a disruption of an ≈33-km-diameter asteroid, which represents a much larger parent body mass than previously estimated. The mass ratio between the parent body and the largest surviving fragment, (832) Karin, is ≈0.15-0.2, corresponding to a highly catastrophic event. Most of the parent body material was ejected as fragments ranging in size from yet-to-be-discovered sub-km members of the Karin cluster to dust grains. The impactor was ≈5.8 km across. We found that the ejections speeds of smaller fragments produced by the collision were larger than those of the larger fragments. The mean ejection speeds of >3-km-diameter fragments were . The model and observed ejection velocity fields have different morphologies perhaps pointing to a problem with our modeling and/or assumptions. We estimate that ∼5% of the large asteroid fragments created by the collision should have satellites detectable by direct imaging (separations larger than 0.1 arcsec). We also predict a large number of ejecta binary systems with tight orbits. These binaries, located in the outer main belt, could potentially be detected by lightcurve observations. Hydrocode modeling provides important constraints on the interior structure of asteroids. Our current work suggests that the parent asteroid of the Karin cluster may have been an unfractured (or perhaps only lightly fractured) monolithic object. Simulations of impacts into fractured/rubble pile targets were so far unable to produce the observed large gap between the first and second largest fragment in the Karin cluster, and the steep slope at small sizes (≈6.3 differential index). On the other hand, the parent asteroid of the Karin cluster was produced by an earlier disruptive collision that created the much larger, Koronis family some 2-3 Gyr ago. Standard interpretation of hydrocode modeling then suggests that the parent asteroid of the Karin cluster should have been formed as a rubble pile from Koronis family debris. We discuss several solutions to this apparent paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号