首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m−2 K−1s−1/2 at mid-latitudes (60° S to 60° N) and 600 J m−2 K−1s−1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.  相似文献   

2.
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ∼0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ∼180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.  相似文献   

3.
Prelaunch planetary protection protocols on spacecraft are designed to reduce the numbers and diversity of viable bioloads on surfaces in order to mitigate the forward contamination of planetary surfaces. In addition, there is a growing appreciation that prelaunch spacecraft cleaning protocols will be required to reduce the levels of biogenic signature molecules on spacecraft to levels that will not compromise life-detection experiments on landers. The biogenic molecule, adenosine triphosphate (ATP) was tested for long-term stability under simulated Mars surface conditions of high UV flux, low temperature, low pressure, Mars atmosphere, and clear-sky dust loading conditions. Data on UV-induced ATP degradation rates were then extrapolated to a diversity of global conditions using a radiative transfer model for UV on Mars. The UV-induced degradation of ATP tested at 4.1 W m−2 UVC (200-280 nm), −10 °C, 7.1 mb, 95% CO2 gas composition, and an atmospheric opacity of τ=0.1 yielded a half-life for ATP of 1342 kJ m−2; or extrapolated to approximately 22 sols on equatorial Mars with an atmospheric opacity of τ=0.5. Temperature was found to moderately affect ATP degradation rates under martian conditions; tests at −80 or 20 °C yielded ATP half-lives of 2594 or 1183 kJ m−2, respectively. The ATP degradation rates reported here are over 10 orders of magnitude slower than the UV-induced biocidal rates reported in the literature on the inactivation of strongly UV-resistant bacterial spores from Bacillus pumilus SAFR-032 [Schuerger, A.C., Richards, J.T., Newcombe, D.A., Venkateswaran, K.J., 2006. Icarus 181, 52-62]. Extrapolating results to global Mars conditions, residence times for a 99% reduction of ATP on spacecraft surfaces ranged from 158 sols on Sun-exposed surfaces to approximately 32,000 sols for the undersides of landers similar to Viking. However, spacecraft materials greatly affected the survival times of ATP under martian conditions. Stainless steel was found to enhance the UV degradation of ATP by over 2 orders of magnitude compared to ATP-doped iridited aluminum, graphite, and astroquartz coupons. Extrapolating these results to global conditions, ATP on stainless steel might be expected to persist between 2 and 320 sols for upper and lower surfaces of landers. Liquid chromatography-mass spectrometry data supported the conclusion that UV irradiation acted to remove the γ-phosphate group from ATP, and no evidence was observed for the UV-degradation of d-ribose or adenine moieties. Long residence times for ATP on spacecraft materials under martian conditions suggest that prelaunch cleaning protocols may need to be strengthened to mitigate against possible ATP contamination of life-detection experiments on Mars landers.  相似文献   

4.
The Deep Impact (DI) spacecraft encountered Comet 9P/Tempel 1 on July 4th, 2005 and observed it with several instruments. In particular, we obtained infrared spectra of the nucleus with the HRI-IR spectrometer in the wavelength range of 1.0-4.9 μm. The data were taken before impact, with a maximum resolution of ∼120 m per pixel at the time of observation. From these spectra, we derived the first directly observed temperature map of a comet nucleus. The surface temperature varied from 272±7 to 336±7 K on the sunlit hemisphere, matching the surface topography and incidence angle. The derived thermal inertia is low, most probably <50 W K−1 m−2 s1/2. Combined with other arguments, it is consistent with the idea that most of rapidly varying thermal physical processes, in particular the sublimation of volatiles around perihelion, should occur close to the surface. Thermal inertia is sufficient to explain the temperature map of the nucleus of Comet Tempel 1 to first order, but other physical processes like roughness and self-radiation are required to explain the details of the temperature map. Finally, we evaluated that the Standard Thermal Model is a good approximation to derive the effective radius of a cometary nucleus with an uncertainty lower than ∼10% if combined with a thermal infrared light curve.  相似文献   

5.
Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ=0.3-5 μm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ=6-35 μm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m−2 K−1 s−1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both.  相似文献   

6.
Radiative control of surface temperature is a key characteristic of the martian environment and its low-density atmosphere. Here we show through meteorological modeling that surface temperature can be far from radiative equilibrium over numerous sloping terrains on Mars, where nighttime mesoscale katabatic winds impact the surface energy budget. Katabatic circulations induce both adiabatic atmospheric heating and enhancement of downward sensible heat flux, which then becomes comparable to radiative flux and acts to warm the ground. Through this mechanism, surface temperature can increase up to 20 K. One consequence is that warm signatures of surface temperature over slopes, observed through infrared spectrometry, cannot be systematically associated with contrasts of intrinsic soil thermal inertia. Apparent thermal inertia maps retrieved thus far possibly contain wind-induced structures. Another consequence is that surface temperature observations close to sloping terrains could allow the validation of model predictions for martian katabatic winds, provided contrasts in intrinsic thermal inertia can be ruled out. The thermal impact of winds is mostly discussed in this paper in the particular cases of Olympus Mons/Lycus Sulci and Terra Meridiani but is generally significant over any sloped terrains in low thermal inertia areas. It is even general enough to apply under daytime conditions, thereby providing a possible explanation for observed afternoon surface cooling, and to ice-covered terrains, thereby providing new insights on how winds could have shaped the present surface of Mars.  相似文献   

7.
The Neutral Particle Detector (NPD), an Energetic Neutral Atom (ENA) sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) on board Mars Express, detected intense fluxes of ENAs emitted from the subsolar region of Mars. The typical ENA fluxes are (4-7) × 105 cm−2 sr−1 s−1 in the energy range 0.3-3 keV. These ENAs are likely to be generated in the subsolar region of the martian exosphere. As the satellite moved away from Mars, the ENA flux decreased while the field of view of the NPD pointed toward the subsolar region. These decreases occurred very quickly with a time scale of a few tens of seconds in two thirds of the orbits. Such a behavior can be explained by the spacecraft crossing a spatially constrained ENA jet, i.e., a highly directional ENA emission from a compact region of the subsolar exosphere. This ENA jet is highly possible to be emitted conically from the subsolar region. Such directional ENAs can result from the anisotropic solar wind flow around the subsolar region, but this can not be explained in the frame of MHD models.  相似文献   

8.
In this paper we analyze near-infrared thermal emission spectra of the spatially resolved nucleus of Comet 9P/Tempel 1 obtained by the NASA spacecraft Deep Impact. Maps of spectral reddening, the product X between the beaming function and directional emissivity, as well as surface temperature are constructed. Thermophysical modeling is used to estimate the degree of small scale surface roughness and thermal inertia by detailed reproduction of the empirical temperature map. Mie and Hapke theories are used in combination with numerically calculated beaming functions to analyze the X map and place constraints on composition and grain size of the surface material. We show that it is absolutely mandatory to include small scale surface roughness in thermophysical modeling of this object, since the resulting self heating is vital for reproducing the measured temperatures. A small scale self heating parameter in the range 0.6?ξ?0.75 is common, but smoother areas where 0.2?ξ?0.3 are also found. Contrary to models neglecting small scale surface roughness, we find that the thermal inertia of Comet 9P/Tempel 1 generally is high (1000-3000 J m−2 K−1 s−1/2), although it may be substantially lower (40-380 J m−2 K−1 s−1/2) in specific areas. We obtain a disk-averaged reddening of 3.5% kÅ−1, with statistically significant local variations around that value on a ±1.0% kÅ−1 level. Vast regions appear covered by small (∼0.1 μm) highly absorbing grains such as carbon or iron-rich silicates. Other regions appear dominated by somewhat larger (∼0.5 μm) and/or less absorbing grains such as troilite or magnesium-rich silicates. Surface variations in reddening, roughness, thermal inertia, composition and/or grain size are moderately to strongly correlated to the locations of morphological units on the surface. The existence of morphological units with differing physical properties may be primordial, hence reflecting a diversity in the building block cometesimals, or resulting from evolutionary processes.  相似文献   

9.
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ∼73° latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix.  相似文献   

10.
M. Grott  E. Hauber  P. Kronberg 《Icarus》2007,186(2):517-526
Insight into the state of the early martian lithosphere is gained by modeling the topography above surface breaking thrust faults in the southern Thaumasia region. Crater counts of key surface units associated with the faulting indicate a scarp emplacement in the late Noachian-early Hesperian periods between 4.0 and 3.7 Gyr. The seismogenic layer thickness at the time of faulting is constrained to 27-35 km and 21-28 km for the two scarps investigated, implying paleo geothermal gradients of 12-18 and 15-23 K km−1, corresponding to heat flows of 24-36 and 30-46 mW m−2. The heat flow values obtained in this study are considerably lower than those derived from rift flank uplift at the close-by Coracis Fossae for a similar time period, indicating that surface heat flow is a strong function of regional setting. If viewed as representative for magmatically active and inactive regions, the thermal gradients at rifts and scarps span the range of admissible global mean values. This implies , with the true value probably being closer to the lower bound.  相似文献   

11.
In the current work we analyze properties of the dust mantle, its thickness and thermal conductivity, necessary to reproduce observed rate of water production of Comet 9P/Tempel 1. For this purpose we considered simplified shape of the comet nucleus approximated by the symmetric prolate ellipsoid with smooth surface. We have performed simulations, using models with dust mantle of the thickness either constant, but nonuniform (Model A), or evolving (Model B). The simulated profiles of water production versus time were compared with observations. In addition, we compared the calculated surface temperature with the real temperatures derived from IR observations (the Deep Impact mission). This new double-stage verification procedure, shows that our model A is a good representation for the nucleus of Comet Tempel 1. This indicates, that the dust mantle thickness should be nonuniform, but does not change significantly with time. We show, that reproducing observed high temperatures of the nucleus requires dust mantle, that is almost everywhere thick and has extremely low thermal inertia. The latter should be close to zero as already predicted by others. The agreement between the simulated and measured water production can be obtained when the dust is regionally thin and has the thermal inertia higher than average, according to our simulations about 100 W s1/2 K−1 m−2. Such regions should be located in the south hemisphere of the nucleus.  相似文献   

12.
Images of Mars in the visible to near-infrared acquired from 1996 to 2005 using the Hubble Space Telescope WFPC2 have been used to model the martian surface photometric function at 502, 673, 953, and 1042 nm. These data range in spatial resolution from 12 to 70 km/pixel at the sub-Earth point, and in phase angle coverage from 0.34° to 40.5°. The WFPC2 images have been calibrated to radiance factor or I/F and projected to a cylindrical map for coregistration and comparison to similarly mapped spacecraft data sets of albedo, topography, thermal inertia, composition, and geology. We modeled the observed I/F as a function of phase angle using Minnaert, Lambert, lunar-Lambert, and Hapke photometric functions for numerous regions of interest binned into albedo units defined by Viking and TES albedo maps, and thermal-inertia units defined by TES thermal-inertia maps. Visibly opaque water-ice clouds and data acquired under high dust opacity conditions were excluded from the analysis. Our modeling suggests that under average to low atmospheric dust opacity conditions and over this range of phase angles, the photometric properties of the martian surface at 502, 673, 953, and 1042 nm are best modeled by lunar-Lambert functions with parameters derived for three surface units defined by low, moderate, and high TES bolometric albedos.  相似文献   

13.
We present the results of extensive thermal-infrared observations of the C-type near-Earth Asteroid (1580) Betulia obtained in June 2002 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Betulia is a highly unusual object for which earlier radiometric observations, interpreted on the basis of simple thermal models, indicated a surface of high thermal inertia. A high thermal inertia implies a lack of thermally insulating regolith. Radiometric observations of other asteroids of comparable size indicate that regolith is present in nearly all cases. Knowledge of the surface thermal properties of small near-Earth asteroids is crucial for meaningful calculations of the Yarkovsky effect, which is invoked to explain the delivery of collisional fragments from the main belt into near-Earth orbits, and apparently has a significant influence on the orbital evolution of potentially hazardous near-Earth asteroids. Furthermore, apart from being an indicator of the presence of thermally insulating regolith on the surface of an asteroid, the thermal inertia determines the magnitude of the diurnal temperature variation and is therefore of great importance in the design of instrumentation for lander missions to small asteroids. In the case of Betulia our database is sufficiently broad to allow the use of more sophisticated thermal models than were available for earlier radiometric observations. The measured fluxes have been fitted with thermal-model emission continua to determine the asteroid's size and geometric albedo, pv. Fits obtained with a new thermophysical model imply an effective diameter of 4.57±0.46 km and an albedo of 0.077±0.015 and indicate a moderate surface thermal inertia of around 180 J m−2 s−0.5 K−1. It is difficult to reconcile our results with earlier work, which indicate a larger diameter for Betulia and a high-thermal-inertia surface of bare rock.  相似文献   

14.
R. Greve 《Icarus》2008,196(2):359-367
The martian polar caps feature large chasmata and smaller trough systems which have no counterpart in terrestrial ice sheets. Chasma Boreale cuts about 500 km into the western part of the north-polar cap, is up to 100 km wide and up to 2 km deep. One possible formation mechanism is by a temporary heat source under the ice due to tectono-thermal or volcanic activity, which melts the ice from below. It is demonstrated by model simulations that this process is feasible, a moderately increased heat flux of 0.5-1 W m−2, sustained over at least tens of thousands of years, producing a topographic depression which resembles the real chasma. Associated meltwater discharge rates are small (), but can exceed 10 km3 a−1 if a stronger heat flux of 10 W m−2 is assumed. Local ice-flow velocities during the process of chasma formation can exceed 1 m a−1 at the head and scarps of the chasma. However, if the thermal anomaly shuts down, glacial flow quickly decreases, so that the chasma can stay open for an indefinite amount of time without an ongoing, sustaining process under the climate conditions of the most recent millions of years.  相似文献   

15.
Slope streaks are gravity-driven albedo features observed on martian slopes since the Viking missions. The debated mechanism of formation could involve alternatively dry granular flow or wet mass wasting. A systematic mapping of slope streaks from the High Resolution Stereo Camera is presented in this paper. Two regions known for their slope streaks activity have been studied, the first one is located close to Cerberus lava flow, and the second one is inside the Olympus Mons Aureole. The statistics of slope streaks shapes measured from orthorectified images confirm previous results from Mars Orbiter Camera surveys. Preferential orientations of slope streaks are reported. Slope streaks occur preferentially on west facing slopes at latitudes lower than 30° N for Olympus and on south-west facing slopes for Cerberus. Wind directions derived from a General Circulation Model during the dusty season correlate with these orientations. Furthermore, west facing slopes at Olympus have a thicker dust cover. These observations indicate that slope streaks are dust avalanches controlled by the preferential accumulation of dust in the downstream side of the wind flow. The paucity of slope streaks at high latitudes and their preferential orientation on south-facing slopes have been presented as an evidence for a potential role of H2O phase transition in triggering or flow. The potential role of H2O cannot be ruled out from our observations but the dust avalanche model together with the atmospheric circulation could potentially explain all observations. The role of H2O might be limited to a stabilizing effect of dust deposits on northward facing slopes at intermediate latitudes (30° N-33° N) and on all slopes further north.  相似文献   

16.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

17.
Photometry and thermal lightcurves of six large asteroids (1-Ceres, 2-Pallas, 3-Juno, 12-Victoria, 85-Io and 511-Davida) have been observed at 870 μm (345 GHz) using the MPIfR 19-Channel Bolometer of the Heinrich-Hertz Submillimeter Telescope. Only Ceres displayed a lightcurve with an amplitude (∼50%, peak to peak) that was significantly greater than the uncertainty in the observations. When thermal fluxes and brightness temperatures are corrected for heliocentric distance and albedo, there is a significant relation with the sub-solar latitude of the asteroid, or the local season of the asteroid. No such trend can be found between observations with solar phase angle. These results are evidence that most of the submillimeter thermal radiation is emitted from below the diurnal thermal wave. Comparing the observed trend with model output suggests that the submillimeter radiation from all the asteroids we observed is best modeled by surface material with low thermal inertia (<15 J m−2 s−0.5 K−1, consistent with mid-infrared observations of large main-belt asteroids) and a refractive index closer to unity relative to densities inferred from radar experiments, implying a veneer of material over the asteroid surface with a density less than 1000 kg m−3. More data with better signal-to-noise and aspect coverage could improve these models and constrain physical properties of asteroid surface materials. This would also allow asteroids to be used as calibration sources with accurately known and stable, broadband fluxes at long wavelengths.  相似文献   

18.
Through a combination of aerobraking (drag deceleration) and ablation, meteoroids which enter planetary atmospheres may be slowed sufficiently to soft-land as meteorites. Results of an earlier study suggest that the current 6 mbar atmosphere of Mars is sufficient to aerobrake significant numbers of small (<10 kg) asteroidal-type meteoroids into survivable, low-velocity (<500 m s−1) impacts with the planet's surface. Since rates of meteorite production depend upon the density of Mars's atmosphere, they must also change as the martian climate changes. However, to date, martian meteorite production has received relatively little attention in the literature Here we expand upon our previous work to study martian meteorite production rates and how they depend upon variations of the martian atmosphere, and to estimate the ranges of mass, velocity and entry-angle that produce meteorites. We find that even the current atmosphere of Mars is sufficient to soft-land significant fractions of incident stony and iron objects, and that these fractions increase dramatically for denser martian atmospheres. Therefore, like impact cratering, meteorite populations may preserve evidence of past martian climates.  相似文献   

19.
Javier Ruiz  Valle López 《Icarus》2010,207(2):631-637
The present-day thermal state of the martian interior is a very important issue for understanding the internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochemistry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar calculations for the south polar region, although uncertainties in lithospheric flexure make the results less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be higher than 19 and 12 mW m−2, respectively, in the north polar region, and similar values might be representative of the south polar region (although with a somewhat higher surface heat flow due to the radioactive contribution from a thicker crust). These values, if representative of martian averages, do not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since (1) chondritic composition models produce a present-day total heat power equivalent to an average surface heat flow of 14-22 mW m−2 and (2) some convective models obtain similar heat flows for the present time. Regions of low heat flow may even have existed during the last billions of years, in accordance with several surface heat flow estimates of ∼20 mW m−2 or less for terrains loaded during Hesperian or Amazonian times. On the other hand, there are some evidences suggesting the current existence of regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained for the north (and maybe the south) polar region.  相似文献   

20.
We examine hypotheses for the formation of light-toned layered deposits in Juventae Chasma using a combination of data from Mars Global Surveyor's Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and Thermal Emission Spectrometer (TES), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). We divide Juventae Chasma into geomorphic units of (i) chasm wall rock, (ii) heavily cratered hummocky terrain, (iii) a mobile and largely crater-free sand sheet on the chasm floor, (iv) light-toned layered outcrop (LLO) material, and (v) chaotic terrain. Using surface temperatures derived from THEMIS infrared data and slopes from MOLA, we derive maps of thermal inertia, which are consistent with the geomorphic units that we identify. LLO thermal inertias range from ∼400 to 850 J m−2 K−1 s−1/2. Light-toned layered outcrops are distributed over a remarkably wide elevation range () from the chasm floor to the adjacent plateau surface. Geomorphic features, the absence of small craters, and high thermal inertia show that the LLOs are composed of sedimentary rock that is eroding relatively rapidly in the present epoch. We also present evidence for exhumation of LLO material from the west wall of the chasm, within chaotic and hummocky terrains, and within a small depression in the adjacent plateau. The data imply that at least some of the LLO material was deposited long before the adjacent Hesperian plateau basalts, and that Juventae Chasma underwent, and may still be undergoing, enlargement along its west wall due to wall rock collapse, chaotic terrain evolution, and exposure and removal of LLO material. The new data allow us to reassess possible origins of the LLOs. Gypsum, one of the minerals reported elsewhere as found in Juventae Chasma LLO material, forms only at low temperatures () and thus excludes a volcanic origin. Instead, the data are consistent with either multiple occurrences of lacustrine or airfall deposition over an extended period of time prior to emplacement of Hesperian lava flows on the plateau above the chasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号