首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed N-body simulation on final accretion stage of terrestrial planets, including the effect of damping of eccentricity and inclination caused by tidal interaction with a remnant gas disk. As a result of runway and oligarchic accretion, about 20 Mars-sized protoplanets would be formed in nearly circular orbits with orbital separation of several to ten Hill radius. The orbits of the protoplanets would be eventually destabilized by long-term mutual gravity and/or secular resonance of giant gaseous planets. The protoplanets would coalesce with each other to form terrestrial planets through the orbital crossing. Previous N-body simulations, however, showed that the final eccentricities of planets are around 0.1, which are about 10 times higher than the present eccentricities of Earth and Venus. The obtained high eccentricities are the remnant of orbital crossing. We included the effect of eccentricity damping caused by gravitational interaction with disk gas as a drag force (“gravitational drag”) and carried out N-body simulation of accretion of protoplanets. We start with 15 protoplanets with 0.2M⊕ and integrate the orbits for 107 years, which is consistent with the observationally inferred disk lifetime (in some runs, we start with 30 protoplanets with 0.1M⊕). In most runs, the damping time scale, which is equivalent to the strength of the drag force, is kept constant throughout each run in order to clarify the effects of the damping. We found that the planets' final mass, spatial distribution, and eccentricities depend on the damping time scale. If the damping time scale for a 0.2M⊕ mass planet at 1 AU is longer than 108 years, planets grow to Earth's size, but the final eccentricities are too high as in gas-free cases. If it is shorter than 106 years, the eccentricities of the protoplanets cannot be pumped up, resulting in not enough orbital crossing to make Earth-sized planets. Small planets with low eccentricities are formed with small orbital separation. On the other hand, if it is between 106 and 108 years, which may correspond to a mostly depleted disk (0.01-0.1% of surface density of the minimum mass model), some protoplanets can grow to about the size of Earth and Venus, and the eccentricities of such surviving planets can be diminished within the disk lifetime. Furthermore, in innermost and outermost regions in the same system, we often find planets with smaller size and larger eccentricities too, which could be analogous to Mars and Mercury. This is partly because the gravitational drag is less effective for smaller mass planets, and partly due to the “edge effect,” which means the innermost and outermost planets tend to remain without collision. We also carried out several runs with time-dependent drag force according to depletion of a gas disk. In these runs, we used exponential decay model with e-folding time of 3×106 years. The orbits of protoplanets are stablized by the eccentricity damping in the early time. When disk surface density decays to ?1% of the minimum mass disk model, the damping force is no longer strong enough to inhibit the increase of the eccentricity by distant perturbations among protoplanets so that the orbital crossing starts. In this disk decay model, a gas disk with 10−4-10−3 times the minimum mass model still remains after the orbital crossing and accretional events, which is enough to damp the eccentricities of the Earth-sized planets to the order of 0.01. Using these results, we discuss a possible scenario for the last stage of terrestrial planet formation.  相似文献   

2.
Junko Kominami  Shigeru Ida 《Icarus》2004,167(2):231-243
We have performed N-body simulations on final accretion stage of terrestrial planets, including the eccentricity and inclination damping effect due to tidal interaction with a gas disk. We investigated the dependence on a depletion time scale of the disk, and the effect of secular perturbations by Jupiter and Saturn. In the final stage, terrestrial planets are formed through coagulation of protoplanets of about the size of Mars. They would collide and grow in a decaying gas disk. Kominami and Ida [Icarus 157 (2002) 43-56] showed that it is plausible that Earth-sized, low-eccentricity planets are formed in a mostly depleted gas disk. In this paper, we investigate the formation of planets in a decaying gas disk with various depletion time scales, assuming disk surface density of gas component decays exponentially with time scale of τgas. Fifteen protoplanets with are initially distributed in the terrestrial planet regions. We found that Earth-sized planets with low eccentricities are formed, independent of initial gas surface density, when the condition (τcross+τgrowth)/2?τgas?τcross is satisfied, where τcross is the time scale for initial protoplanets to start orbit crossing in a gas-free case and τgrowth is the time scale for Earth-sized planets to accrete during the orbit crossing stage. In the cases satisfying the above condition, the final masses and eccentricities of the largest planets are consistent with those of Earth and Venus. However, four or five protoplanets with the initial mass remain. In the final stage of terrestrial planetary formation, it is likely that Jupiter and Saturn have already been formed. When Jupiter and Saturn are included, their secular perturbations pump up eccentricities of protoplanets and tend to reduce the number of final planets in the terrestrial planet regions. However, we found that the reduction is not significant. The perturbations also shorten τcross. If the eccentricities of Jupiter and Saturn are comparable to or larger than present values (∼0.05), τcross become too short to satisfy the above condition. As a result, eccentricities of the planets cannot be damped to the observed value of Earth and Venus. Hence, for the formation of terrestrial planets, it is preferable that the secular perturbations from Jupiter and Saturn do not have significant effect upon the evolution. Such situation may be reproduced by Jupiter and Saturn not being fully grown, or their eccentricities being smaller than the present values during the terrestrial planets' formation. However, in such cases, we need some other mechanism to eliminate the problem that numerous Mars-sized planets remain uncollided.  相似文献   

3.
Althea V. Moorhead 《Icarus》2005,178(2):517-539
This paper presents a parametric study of giant planet migration through the combined action of disk torques and planet-planet scattering. The torques exerted on planets during Type II migration in circumstellar disks readily decrease the semi-major axes a, whereas scattering between planets increases the orbital eccentricities ?. This paper presents a parametric exploration of the possible parameter space for this migration scenario using two (initial) planetary mass distributions and a range of values for the time scale of eccentricity damping (due to the disk). For each class of systems, many realizations of the simulations are performed in order to determine the distributions of the resulting orbital elements of the surviving planets; this paper presents the results of ∼8500 numerical experiments. Our goal is to study the physics of this particular migration mechanism and to test it against observations of extrasolar planets. The action of disk torques and planet-planet scattering results in a distribution of final orbital elements that fills the a-? plane, in rough agreement with the orbital elements of observed extrasolar planets. In addition to specifying the orbital elements, we characterize this migration mechanism by finding the percentages of ejected and accreted planets, the number of collisions, the dependence of outcomes on planetary masses, the time spent in 2:1 and 3:1 resonances, and the effects of the planetary IMF. We also determine the distribution of inclination angles of surviving planets and the distribution of ejection speeds for exiled planets.  相似文献   

4.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

5.
This paper investigates the surface density evolution of a planetesimal disk due to the effect of type-I migration by carrying out N-body simulation and through analytical method, focusing on terrestrial planet formation. The coagulation and the growth of the planetesimals take place in the abundant gas disk except for a final stage. A protoplanet excites density waves in the gas disk, which causes the torque on the protoplanet. The torque imbalance makes the protoplanet suffer radial migration, which is known as type-I migration. Type-I migration time scale derived by the linear theory may be too short for the terrestrial planets to survive, which is one of the major problems in the planet formation scenario. Although the linear theory assumes a protoplanet being in a gas disk alone, Kominami et al. [Kominami, J., Tanaka, H., Ida, S., 2005. Icarus 167, 231-243] showed that the effect of the interaction with the planetesimal disk and the neighboring protoplanets on type-I migration is negligible. The migration becomes pronounced before the planet's mass reaches the isolation mass, and decreases the solid component in the disk. Runaway protoplanets form again in the planetesimal disk with decreased surface density. In this paper, we present the analytical formulas that describe the evolution of the solid surface density of the disk as a function of gas-to-dust ratio, gas depletion time scale and semimajor axis, which agree well with our results of N-body simulations. In general, significant depletion of solid material is likely to take place in inner regions of disks. This might be responsible for the fact that there is no planet inside Mercury's orbit in our Solar System. Our most important result is that the final surface density of solid components (Σd) and mass of surviving planets depend on gas surface density (Σg) and its depletion time scale (τdep) but not on initial Σd; they decrease with increase in Σg and τdep. For a fixed gas-to-dust ratio and τdep, larger initial Σd results in smaller final Σd and smaller surviving planets, because of larger Σg. To retain a specific amount of Σd, the efficient disk condition is not an initially large Σd but the initial Σd as small as the specified final one and a smaller gas-to-dust ratio. To retain Σd comparable to that of the minimum mass solar nebula (MMSN), a disk must have the same Σd and a gas-to-dust ratio that is smaller than that of MMSN by a factor of 1.3×(τdep/1 Myr) at ∼1 AU. (Equivalently, type-I migration speed is slower than that predicted by the linear theory by the same factor.) The surviving planets are Mars-sized ones in this case; in order to form Earth-sized planets, their eccentricities must be pumped up to start orbit crossing and coagulation among them. At ∼5 AU, Σd of MMSN is retained under the same condition, but to form a core massive enough to start runaway gas accretion, a gas-to-dust ratio must be smaller than that of MMSN by a factor of 3×τdep/1 Myr.  相似文献   

6.
We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called “type-I migration,” and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (106-107 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 105 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets (“oligarchic growth”) is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested.  相似文献   

7.
Rodney S Gomes 《Icarus》2003,161(2):404-418
I simulate the orbital evolution of the four major planets and a massive primordial planetesimal disk composed of 104 objects, which perturb the planets but not themselves. As Neptune migrates by energy and angular momentum exchange with the planetesimals, a large number of primordial Neptune-scattered objects are formed. These objects may experience secular, Kozai, and mean motion resonances that induce temporary decrease of their eccentricities. Because planets are migrating, some planetesimals can escape those resonances while in a low-eccentricity incursion, thus avoiding the return path to Neptune close encounter dynamics. In the end, this mechanism produces stable orbits with high inclination and moderate eccentricities. The population so formed together with the objects coming from the classical resonance sweeping process, originates a bimodal distribution for the Kuiper Belt orbits. The inclinations obtained by the simulations can attain values above 30° and their distribution resembles a debiased distribution for the high-inclination population coming from the real classical Kuiper Belt.  相似文献   

8.
We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of being able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self sustained MHD turbulence are considered. The conditions for gap formation and the transition from type I migration are investigated and found to depend on whether the single parameter M p R 3/(M* H 3), with M p, M*, R, and H being the protoplanet mass, the central mass, the orbital radius and the disk semi-thickness, respectively, exceeds a number of order unity. We also investigate the coorbital torques experienced by a moving protoplanet in an inviscid disk. This is done by demonstrating the equivalence of the problem for a moving protoplanet to one where the protoplanet is in a fixed orbit which the disk material flows through radially as a result of the action of an appropriate external torque. For sustainable coorbital torques to be realized a quasi steady state must be realized in which the planet migrates through the disk without accreting significant mass. In that case, although there is sensitivity to computational parameters, in agreement with earlier work by Masset and Papaloizou [2003, ApJ, 588, 494] based on global simulations, the coorbital torques are proportional to the migration speed and result in a positive feedback on the migration, enhancing it and potentially leading to a runaway. This could lead to fast migration for protoplanets in the Saturn mass range in massive disks and may be relevant to the mass period correlation for extrasolar planets which gives a preponderance of sub Jovian masses at short orbital periods.  相似文献   

9.
We present the results of an extensive study of the final stage of terrestrial planet formation in disks with different surface density profiles and for different orbital configurations of Jupiter and Saturn. We carried out simulations in the context of the classical model with disk surface densities proportional to \({r^{-0.5}}, {r^{-1}}\) and \({r^{-1.5}}\), and also using partially depleted, non-uniform disks as in the recent model of Mars formation by Izidoro et al. (Astrophys J 782:31, 2014). The purpose of our study is to determine how the final assembly of planets and their physical properties are affected by the total mass of the disk and its radial profile. Because as a result of the interactions of giant planets with the protoplanetary disk, secular resonances will also play important roles in the orbital assembly and properties of the final terrestrial planets, we will study the effect of these resonances as well. In that respect, we divide this study into two parts. When using a partially depleted disk (Part 1), we are particularly interested in examining the effect of secular resonances on the formation of Mars and orbital stability of terrestrial planets. When using the disk in the classical model (Part 2), our goal is to determine trends that may exist between the disk surface density profile and the final properties of terrestrial planets. In the context of the depleted disk model, results of our study show that in general, the \(\nu _5\) resonance does not have a significant effect on the dynamics of planetesimals and planetary embryos, and the final orbits of terrestrial planets. However, \(\nu _6\) and \(\nu _{16}\) resonances play important roles in clearing their affecting areas. While these resonances do not alter the orbits of Mars and other terrestrial planets, they strongly deplete the region of the asteroid belt ensuring that no additional mass will be scattered into the accretion zone of Mars so that it can maintain its mass and orbital stability. In the context of the classical model, the effects of these resonances are stronger in disks with less steep surface density profiles. Our results indicate that when considering the classical model (Part 2), the final planetary systems do not seem to show a trend between the disk surface density profile and the mean number of the final planets, their masses, time of formation, and distances to the central star. Some small correlations were observed where, for instance, in disks with steeper surface density profiles, the final planets were drier, or their water contents decreased when Saturn was added to the simulations. However, in general, the final orbital and physical properties of terrestrial planets seem to vary from one system to another and depend on the mass of the disk, the spatial distribution of protoplanetary bodies (i.e., disk surface density profile), and the initial orbital configuration of giant planets. We present results of our simulations and discuss their implications for the formation of Mars and other terrestrial planets, as well as the physical properties of these objects such as their masses and water contents.  相似文献   

10.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   

11.
The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data reveal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as “Kozai cycles” and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (?0.6) and very low (e ? 0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e? 0.1–0.6).  相似文献   

12.
Sean N. Raymond  Thomas Quinn 《Icarus》2005,177(1):256-263
‘Hot jupiters,’ giant planets with orbits very close to their parent stars, are thought to form farther away and migrate inward via interactions with a massive gas disk. If a giant planet forms and migrates quickly, the planetesimal population has time to re-generate in the lifetime of the disk and terrestrial planets may form [P.J. Armitage, A reduced efficiency of terrestrial planet formation following giant planet migration, Astrophys. J. 582 (2003) L47-L50]. We present results of simulations of terrestrial planet formation in the presence of hot/warm jupiters, broadly defined as having orbital radii ?0.5 AU. We show that terrestrial planets similar to those in the Solar System can form around stars with hot/warm jupiters, and can have water contents equal to or higher than the Earth's. For small orbital radii of hot jupiters (e.g., 0.15, 0.25 AU) potentially habitable planets can form, but for semi-major axes of 0.5 AU or greater their formation is suppressed. We show that the presence of an outer giant planet such as Jupiter does not enhance the water content of the terrestrial planets, but rather decreases their formation and water delivery timescales. We speculate that asteroid belts may exist interior to the terrestrial planets in systems with close-in giant planets.  相似文献   

13.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular.  相似文献   

14.
A number of extrasolar planets have been detected in close orbits around nearby stars. It is probable that these planets did not form in these orbits but migrated from their formation locations beyond the ice line. Orbital migration mechanisms involving angular momentum transfer through tidal interactions between the planets and circumstellar gas-dust disks or by gravitational interaction with a residual planetesimal disk together with several means of halting inward migration have been identified. These offer plausible schemes to explain the orbits of observed extrasolar giant planets and giant planets within the Solar System. Recent advances in numerical integration methods and in the power of computer workstations have allowed these techniques to be applied to modelling directly the mechanisms and consequences of orbital migration in the Solar System. There is now potential for these techniques also to be applied to modelling the consequences of the orbital migration of planets in the observed exoplanetary systems. In particular the detailed investigation of the stability of terrestrial planets in the habitable zone of these systems and the formation of terrestrial planets after the dissipation of the gas disk is now possible. The stability of terrestrial planets in the habitable zone of selected exoplanetary systems has been established and the possibility of the accretion of terrestrial planets in these systems is being investigated by the author in collaboration with Barrie W. Jones (Open University), and with John Chambers (NASA-Ames) and Mark Bailey of Armagh Observatory, using numerical integration. The direct simulation of orbital migration by planetesimal scattering must probably await faster hardware and/or more efficient algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100+oceans of water (1 ocean=1.5×1024 g), and vary in mass between 0.23M and 3.85M. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1-2M protoplanets which can serve as the accretion seeds for 2+M planets with large water contents.  相似文献   

16.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

17.
Most extrasolar planets discovered to date are more massive than Jupiter, in surprisingly small orbits (semimajor axes less than 3 AU). Many of these have significant orbital eccentricities. Such orbits may be the product of dynamical interactions in multiplanet systems. We examine outcomes of such evolution in systems of three Jupiter-mass planets around a solar-mass star by integration of their orbits in three dimensions. Such systems are unstable for a broad range of initial conditions, with mutual perturbations leading to crossing orbits and close encounters. The time scale for instability to develop depends on the initial orbital spacing; some configurations become chaotic after delays exceeding 108 y. The most common outcome of gravitational scattering by close encounters is hyperbolic ejection of one planet. Of the two survivors, one is moved closer to the star and the other is left in a distant orbit; for systems with equal-mass planets, there is no correlation between initial and final orbital positions. Both survivors may have significant eccentricities, and the mutual inclination of their orbits can be large. The inner survivor's semimajor axis is usually about half that of the innermost starting orbit. Gravitational scattering alone cannot produce the observed excess of “hot Jupiters” in close circular orbits. However, those scattered planets with large eccentricities and small periastron distances may become circularized if tidal dissipation is effective. Most stars with a massive planet in an eccentric orbit should have at least one additional planet of comparable mass in a more distant orbit.  相似文献   

18.
We numerically model the evolution of dust in a protoplanetary disk using a two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a disk comprising 1% dust by mass in the presence of an embedded planet for two different disk configurations: a small, minimum mass solar nebular (MMSN) disk and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the grain size and planetary mass to see how they effect the resulting disk structure. We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a different appearance depending on the grain size and that such differences will be detectable in the millimetre domain with ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may facilitate the growth of planetesimals in this high density region.  相似文献   

19.
The formation of the gas giant planets Jupiter and Saturn probably required the growth of massive 15 Earth-mass cores on a time scale shorter than the 107 time scale for removal of nebular gas. Relatively minor variations in nebular parameters could preclude the growth of full-size gas giants even in systems in which the terrestrial planet region is similar to our own. Systems containing failed Jupiters, resembling Uranus and Neptune in their failure to capture much nebular gas, would be expected to contain more densely populated cometary source regions. They will also eject a smaller number of comets into interstellar space. If systems of this kind were the norm, observation of hyperbolic comets would be unexpected. Monte Carlo calculations of the orbital evolution of region of such systems (the Kuiper belt) indicate that throughout Earth history the cometary impact flux in their terrestrial planet regions would be 1000 times greater than in our Solar System. It may be speculated that this could frustrate the evolution of organisms that observe and seek to understand their planetary system. For this reason our observation of these planets in our Solar System may tell us nothing about the probability of similar gas giants occurring in other planetary systems. This situation can be corrected by observation of an unbiased sample of planetary systems.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

20.
H.M. Wiechen 《Icarus》2005,175(1):15-22
The remnant magnetization of chondrite type meteorite matter indicates the existence of 10−5-10−3 T magnetic fields in the early Solar System accretion disk. Taking into account parameter regimes being typical for this evolutionary stage of Sun and planets we consider the protosolar disk matter as partially ionized dusty plasma consisting of massive charged dust grains, neutral gas, electrons and ions. Results of systematic multifluid neutral gas-plasma-dust simulations show that shear flow driven collisional interactions yield a self-magnetization of the early Solar System matter which is able to explain the measured remnant magnetization of meteorite material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号