首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets (Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].  相似文献   

2.
Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d−1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d−1 (2fφ) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) interpretation of the fan coma that this comet often displays. We argue that possible LAM states are excluded either because they are too difficult to excite or because they would be inconsistent with the formation of the observed fan morphology. Two possible SAM states emerge that provide good fits to the observed periodicities, one with a precessional frequency for the long axis about the total angular momentum vector of 1.614 d−1 (P?=14.9 h) and an oscillation frequency around the long axis of 0.539 d−1 (Pψ=44.5 h) and a second with a precessional frequency of 2.162 d−1 (P?=11.1 h) combined with an oscillation around the long axis of 0.502 d−1 (Pψ=47.8 h). While either solution is possible, the latter is, in a least squares sense, more likely to be the actual spin state. In both cases the direction of the total angular momentum vector (αM,δM[J2000]=198.6, −0.3 deg) is assumed to be defined by the evolving geometry and morphology of the coma (Sekanina, 1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475; Festou and Barale, 2000, Astron J. 119, 3119-3132). We discuss the possible locations of the primary active areas found by Sekanina (1988, Astron J. 95, 911-924, 1988, Astron. J. 96, 1455-1475) and, while they are at high cometographic latitudes, they do not have to be physically located close the region were the axis of maximum moment of inertia pierces the surface (i.e., at high cometocentric latitude). We offer a new interpretation of the 10.7 μm data by Fernández et al. (2000, Icarus 147, 145-160) which yields an axial ratio a/b=2.04. This, with the two SAM states that we have found, requires that b/c>1.18 or >1.09 implying a significant asymmetry in the shape of the elongated nucleus. For the observed fan morphology to be maintained, the true axial ratio b/c cannot be much larger than these limiting values otherwise the amplitude of the oscillation about the long axis becomes too large and the fan morphology would be destroyed. The precise phasing of the spin modes, i.e., the value of the Euler angles at a particular time, is not determinable from the current data set, but a set of well sampled thermal infrared observations of the nucleus covering many periods and a wide range of observing geometries could provide this information in the future as well as clearly distinguishing between the two excited spin states.  相似文献   

3.
We present a new catalog of absolute nuclear magnitudes of Jupiter family (JF) comets, which is an updated version of our previous catalog [Tancredi, G., Fernández, J.A., Rickman, H., Licandro, J., 2000. Astron. Astrophys. Suppl. Ser. 146, 73-90]. From the new catalog we find a linear cumulative luminosity function (CLF) of slope 0.54±0.05 for JF comets with q?2.5 AU. By considering this CLF combined with the few measured geometric albedos with their respective uncertainties, and assuming a canonical albedo of 0.035±0.012 for those comets with undetermined albedos, we derive a cumulative size distribution that follows a power-law of index −2.7±0.3. The slope is similar to that derived from some theoretical collisional models and from some populations of Solar System bodies like the trans-neptunian objects. We also discuss and compare our size distribution with those by other authors that have recently appeared in the literature. Some striking differences in the computed slopes are explained in terms of biases in the studied samples, the different weights given to the brightest members of the samples, and discrepancies in the values of a few absolute nuclear magnitudes. We also compute sizes and fractions of active surface area of JF comets from their estimated absolute nuclear magnitudes and their water production rates. With the outgassing model that we use, about 60% of the computed fractions f of active surface area are found to be smaller than 0.2, with one case (28P/Neujmin 1) of no more than 0.001, which suggests that JF comets may transit through stages of very low activity, or even dormancy. There is an indication that JF comets with radii RN?3 km have active fractions f?0.01, which might be due to the rapid formation of insulating dust mantles on larger nuclei.  相似文献   

4.
The nucleus of Comet 9P/Tempel 1 was first observed with the Hubble Space Telescope (HST) in December 1997 [Lamy, P., Toth, I., A'Hearn, M.F., Weaver, H., Weissman, P.R., 2001. Icarus 154, 337-344], but the temporal coverage was insufficient to determine its rotational period. Because the success of the Deep Impact mission was critically dependent on understanding the rotational state and approximate shape and size of the nucleus, we extensively re-observed 9P/Tempel 1, this time with the Advanced Camera for Surveys (HST/ACS), from May 7.9 to 9.5, 2004 (UT). At the mid-point of the observing window, the comet was 3.52 AU from the Sun, 4.03 AU from the Earth, and at a solar phase angle of 13.3°. The program was comprised of 18 separate visits, each one corresponding to an HST orbit filled with 3 ACS exposures of either 800 or 857 s duration with the F606W broadband filter. These very deep exposures revealed a star-like object, without any apparent coma. The light curve, defined by 49 data points, is characterized by a mean apparent V magnitude of 21.8 and an amplitude of 0.5 mag, indicating that we were viewing the varying cross-section of a rotating, elongated body. The periodicity was analyzed with seven different techniques yielding a rotational period in the range 39.40 to 43.00 h, and a mean value of 41.27±1.85 h (1σ). Using an albedo pV=0.04 and a linear phase law with a coefficient , we determined an effective radius of 3.01 km; a possible prolate spheroid solution has semi-axes a=3.71 km, b=2.36 km and a minimum axial ratio a/b∼1.57. By comparing the light curves obtained in 1997 and in 2004, we were able to constrain the phase function of the nucleus. Finally, an upper limit of Afρ<0.04 cm is set based on the non-detection of the coma.  相似文献   

5.
Micha? Drahus  Wac?aw Waniak 《Icarus》2006,185(2):544-557
The article presents results of CCD photometry in R-band of a dynamically new Comet C/2001 K5 (LINEAR), obtained at a heliocentric distance of about 5.6 AU, after the perihelion passage. Being so distant from the Sun, this comet was extremely active (Afρ close to 2000 cm), exhibiting quite well developed dust coma and tail. During the observations, general photometric behavior of the comet with heliocentric distance r was well described by the 2.5nlog(r) function with coefficient n=5. The radial profiles of the coma were found to be undulated, with mean slope of the dependence between cometary magnitude and 2.5log of aperture radius (at comet distance) equal to . The light curve of Comet LINEAR exhibited short-term variability which we attributed to cyclic changes of dust emission, induced by nucleus rotation. Model computations by some authors have revealed that active comets can change their spin status quite substantially even during a single orbital revolution. Thus, attempting to search for a rotation frequency, we have modified the classical PDM approach by including the spin acceleration term. Such DynamicalPDM (DPDM) method revealed the most reliable solution for the frequency f0=0.019048±0.000013 h−1 and its first time-derivative (index “zero” denotes reference to the mid time of the whole observing run), indicating a rapid spin-down of the nucleus. These parameters are equivalent to the rotation period of 52.499±0.036 h and its relative increment of 0.02729±0.00013. We present the most probable evolution of the rotation frequency of Comet LINEAR, based on the results of periodicity analysis and a simple, almost parameter independent, dynamical model of nucleus rotation. It is also shown that the DPDM may be an effective tool for determination of a nucleus radius, which provided us with the value of 1.53±0.25 km for Comet LINEAR.  相似文献   

6.
The Wide Field Camera (WFC) on the Hubble Space Telescope and the Low Resolution Imaging Spectrograph (LRIS) on the Keck II telescope have been used to image 21 distant dynamically new, long-period (LP) and short-period (SP) Jupiter-family (JF) comet nuclei (near aphelion), as part of a long-term program to search for physical differences between short-period comets and Oort cloud comets. WFC data were obtained on Comets C/1987 H1 (Shoemaker) and C/1984 K1 (Shoemaker) during Cycle 5 (1995 December) and on C/1988 B1 (Shoemaker), C/1987 F1 (Torres), and C/1983 O1 (?ernis) during Cycle 6 (1997 April, May, and June). The HST comets were at heliocentric distances 20.4 < r[AU] < 29.5. Each comet observation was allocated 7 orbits, for ≈3.6 hrs of integration. The most difficult part of the image reduction was the removal of cosmic rays. We present our scheme for cosmic ray removal. None of the HST comet nuclei was detected to the 3-σ level at mR∼27. The inferred upper limits to the nucleus radii are . The SP comets range in radius between , with a median value of RN∼1.61 km. The LP comets ranged in size between <4.0-56 km. Over a range of radii between 1-10 km, the nuclei can be fit with a cumulative distribution N(>RN)∝RNα with α=1.45±0.05, and for nuclei in the range 2-5 km, α=1.91±0.06. Statistical analysis and modeling shows that the slopes of the observed TNO and JF comet distributions are not compatible, suggesting that the intrinsic distribution of JF comet nuclei is a differential a−3.5 power law truncated at small nucleus radii between 0.3 and 2.0 km.  相似文献   

7.
Ignacio Ferrín 《Icarus》2007,187(1):326-331
In support of the Deep Impact Mission, we have updated the secular light curve of 9P/Tempel 1 presented in Paper I [Ferrín, I., 2005. Icarus 178, 493-516], with new data sets. The secular light curves (SLC) of the comet are presented in the log and time plots (Figs. 1 and 2) and provide a clear profile of the overall shape of the envelope. We arrive at the following conclusions: (1) Improved values of 18 photometric parameters are derived including the turn on and turn off points, RON=−3.47±0.05 AU, ROFF=+4.20±0.05 AU, and TON=−410±25 d, TOFF=+555±25 d. (2) The improved SLC shows a most interesting and peculiar shape, with a linear power law of slope n=7.7±0.1 from RON=−3.47 AU to RBP=−2.08±0.05 AU, and then converts to a law with curvature. The break point of the power law at RBP=−2.08 AU, mV(1,R)=14.0±0.1 mag, is interpreted as a change in sublimating something more volatile than water ice (most probably CO2), to water ice sublimation. In other words, the comet's sublimation is controlled by two different substances. (3) The photometric-age (defined in Paper I) and the time-age of the comet [Ferrín, I., 2006. Icarus. In press] are recomputed, and results in a value P-AGE=21±2 and T-AGE=11±2 comet years. Thus 9P is a young comet. (4) The comet is active almost up to aphelion since the turn off point has been determined at ROFF=+4.20±0.05 AU while aphelion takes place at Q=+4.74 AU. (5) The comet exhibits activity post-aphelion which is not understood. Two hypothesis are advanced to explain this behavior.  相似文献   

8.
9.
The photometric properties of the nucleus of Comet 9P/Tempel 1 are studied from the disk-resolved color images obtained by Deep Impact (DI). Comet Tempel 1 has typical photometric properties for comets and dark asteroids. The disk-integrated spectrum of the nucleus of Tempel 1 between 309 and 950 nm is linear without any features at the spectral resolution of the filtered images. At V-band, the red slope of the nucleus is 12.5±1% per 100 nm at 63° phase angle, translating to B-V=0.84±0.01, V-R=0.50±0.01, and R-I=0.49±0.02. No phase reddening is confirmed. The phase function of the nucleus of Tempel 1 is constructed from DI images and earlier ground-based observations found from the literature. The phase coefficient is determined to be β=0.046±0.007 mag/deg between 4° and 117° phase angle. Hapke's theoretical scattering model was used to model the photometric properties of this comet. Assuming a single Henyey-Greenstein function for the single-particle phase function, the asymmetry factor of Tempel 1 was fitted to be g=−0.49±0.02, and the corresponding single-scattering albedo (SSA) was modeled to be 0.039±0.005 at 550 nm wavelength. The SSA spectrum shows a similar linear slope to that of the disk-integrated spectrum. The roughness parameter is found to be 16°±8°, and independent of wavelength. The Minnaert k parameter is modeled to be 0.680±0.014. The photometric variations on Tempel 1 are relatively small compared to other comets and asteroids, with a ∼20% full width at half maximum of albedo variation histogram, and ∼3% for color. Roughness variations are evident in one small area, with a roughness parameter about twice the average and appearing to correlate with the complex morphological texture seen in high-resolution images.  相似文献   

10.
Paul R. Weissman 《Icarus》1983,55(3):448-454
D. J. Michels, N. R. Sheeley, Jr., R. A. Howard, and M. J. Koomen (Science215, 1097–1102, 1982) observed a comet which appears to have impacted the Sun. Z. Sekanina (Astron. J..87, 1059–1072, 1982) showed that the comet, 1979XI, was probably a member of the Kreutz group of sungrazing comets. The sungrazers typically have perihelia of 1.2–1.9 solar radii but Sekanina found q = 0.35 R for 1979XI. It is interesting to speculate how the perihelion may have been reduced to this small value. The change in perihelion can not be explained by planetary, stellar, or nongravitational perturbations. Tidal splitting of the nucleus on a previous perihelion passage is also ruled out, through a random splitting event near aphelion of the comet's orbit is a remote possibility. The most plausible explanation is collision with another body, most likely a comet, at large heliocentric distance. However, the expected probability of such an event is exceedingly small. Another aspect of the problem is whether the nucleus of 1979XI sublimated completely before impacting the Sun. Assuming a water ice nucleus, it is shown that a surface layer of only 5–15 m thickness would be sublimated prior to impact. Although it is likely that the nucleus tidally disrupted after crossing the solar Roche limit, the ultimate destruction of the nucleus probably resulted from the shock of hitting the denser regions of the solar atmosphere, just above the photosphere.  相似文献   

11.
We report the detection of the nucleus of Comet 22P/Kopff with the Planetary Camera of the Hubble Space Telescope (HST) and with the Infrared Camera of the Infrared Space Observatory (ISOCAM). The HST observations were performed on 18 July 1996, 16 days after its perihelion passage of 2 July 1996, when it was at Rh=1.59 AU from the Sun and Δ=0.57 AU from the Earth. A sequence of images taken with four broad-band filters was repeated eight times over a 12-h time interval. The ISOCAM observations were performed on 15 October 1996, 106 days after the perihelion passage, when the comet was at Rh=1.89 AU from the Sun and Δ=1.32 AU from the Earth. Seven images were obtained with a broad-band filter centered at 11.5 μm. In both instances, the spatial resolution was appropriate to separate the signal of the nucleus from that of the coma. We determine the Johnson-Kron-Cousins BVRI magnitudes of the nucleus. The visible lightcurves constrain neither the rotation period nor the ratio of semiaxes. We favor the solution of a rather spherical nucleus, although the situation of a pole-on view of an irregular body cannot be excluded. The systematic decreasing trend of the lightcurves could suggest a period of several days. Combining the visible and infrared observations, we find that an ice-dust mixed model is ruled out, while the standard thermal model leads to a nuclear radius of Rn=1.67±0.18 km of albedo pv=0.042±0.006. The red color of the nucleus is characterized by a nearly constant gradient of S′=14±5% per kÅ from 400 to 800 nm. We estimate a fractional active area of 0.35 which places 22P/Kopff in the class of highly active short-period comets. At Rh=1.59 AU, the dust coma is characterized by a red color with a reflectivity gradient S′=17±3% per kÅ, compatible with that of the nucleus, and Afρ=545 cm, yielding a dust production rate of Qd=130 kg sec−1.  相似文献   

12.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   

13.
The outer Solar System object (29981) 1999 TD10 was observed simultaneously in the R, and J and H bands in September 2001, and in B, V, R, and I in October 2002. We derive BV=0.80±0.05 mag, VR=0.48±0.05 mag, RI=0.44±0.05 mag, RJ=1.24±0.05 mag, and JH=0.61±0.07 mag. Combining our data with the data from Rousselot et al. (2003, Astron. Astrophys. 407, 1139) we derive a synodic period of 15.382±0.001 hr in agreement with the period from Rousselot et al. Our observations at the same time, with better S/N and seeing, show no evidence of a coma, contrary to the claim by Choi et al. (2003, Icarus 165, 101).  相似文献   

14.
We present a synthetic analysis of all available infrared (2-20 μm) and radio (1.3-6.1 cm) observations of comet C/1983 H1 IRAS-Araki-Alcock performed during its close approach to Earth in May 1983. We implement a model based on a spherical nucleus with a macroscopic mosaic of small and numerous active and inactive regions, and take into account the strong phase effect in the calculations of the thermal flux (often neglected in past interpretations). The orientation of the spin axis is assumed to be that determined by Sekanina [1988. Astron. J. 95, 1876-1894]. Additional constraints coming from visible photometry, measurements of the water production rate and the temporal variations of the cometary activity are introduced. We derive an equivalent nucleus radius of 3.4±0.5 km, consistent with a geometric albedo of 0.04 ±0.01 and a phase coefficient in the visible, and an active fraction of 2.9 ±1.9%. Although the nucleus is probably elongated as found in the past (Sekanina, 1988), we show that the relevant measurements were likely contaminated by the contribution of a variable coma.  相似文献   

15.
We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11-12 weeks before perihelion. The CN, C2, and C3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude >+75°, while the secondary jet is located on the opposite hemisphere between −37° and −62°. We used the apparent position angle of the primary jet to determine the pole orientation, α=281±5°, δ=+13±7°, and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties.  相似文献   

16.
Comet P/Halley has been observed during its approach to perihelion at heliocentric distancesR = 11.0 AU and R = 8.2 AU. No extended coma is seen and limits can be placed on the fraction of the total light contributed by coma. The brightness of the comet varies on a short time scale. The variations may be due to transient activity or to rotation of the irregular nucleus.  相似文献   

17.
We present the results of our visible and near-IR observations of Comet 9P/Tempel 1 during the Deep Impact encounter. The comet was observed before, during, and after impact from Kitt Peak National Observatory (J, H, K) and Observatorio Astronómico Nacional-San Pedro Mártir, Mexico (B, V, R, I). High time-resolution images in R, J, H, and K the night of impact with a 3.5 radius aperture revealed a rapid brightening which had multiple slopes and lasted for approximately 25 min before leveling off. The brightness decreased on subsequent nights and returned to near pre-impact levels by July 8 UT. The R-J, R-H, R-K, J-H, J-K, and H-K colors became bluer the night of impact. The R-J, R-H, and R-K colors remained blue on the night after impact while the J-H, J-K, and H-K colors returned to baseline levels. The observed color changes suggest the bluening was due to an increase in small grains relative to the ambient coma, an increase in ice relative to refractory dust in the coma, or a combination of the two. The ejecta were initially directed towards the southwest but had been driven southeast by solar radiation pressure by the second night after impact. The mean projected ejecta velocity was estimated at 0.20-0.23 km s−1 over the first 24 h after impact.  相似文献   

18.
Y.J. Choi  N. Brosch 《Icarus》2003,165(1):101-111
We describe observations of the scattered Kuiper Belt object (29981) 1999 TD10 performed during five observing runs at two observatories, over 370 days from 2000 September to 2001 September. They show significant brightness variations that fit a double-peaked lightcurve with period 15.448±0.012 h in V and R bands. The phase effect in V band, 0.09±0.01 mag deg−1, is smaller than that of Pluto but larger than that of several KBOs, while in R band it is 0.030±0.005 mag deg−1. We find color variation between the two bands, which implies a non-homogeneous albedo distribution on the surface. Evidence of surface activity near perihelion in the form of a coma/tail is presented using radial image profiles and a 2D contour map.  相似文献   

19.
Comet Hale-Bopp was imaged at wavelengths from 1.87 to 2.22 μm by HST/NICMOS in post-perihelion observations starting on UT 1997 August 27.95. Diffraction-limited (∼02) images were obtained at high signal-to-noise (∼1500) to probe the composition and dynamics of the inner coma and also the size and activity of the nucleus. The velocities of several unusual morphological features over a 1.7 h period, indicate that a significant outburst occurred 7.4 h prior to these images while the comet was at a heliocentric distance of 2.49 AU. Similar features are also apparent after re-analysis of pre-perihelion ground-based images. The inner coma (radius ?2500 km) is dominated by an “arc” feature, which expanded and became more diffuse with time. This feature can be modeled as the bright central portion of a “jet of outburst” from a near-equatorial region of the nucleus. Less prominent, time-variable linear and circular morphologies are also apparent. The expansion rates of both the arc feature and the circular morphologies imply a common origin and also suggest a grain size distribution with two broad maxima. In addition, several static linear features extend to the edge of the field of view (21,100 km). Radial brightness profiles are highly asymmetric and only approach a ρ−1 decline at distances ?15,000 km. Images in a narrow-band filter at 2.04 μm exhibit a ∼4% absorption feature relative to nearly simultaneous images at wavelengths of 2.22, 1.90, and 1.87 μm. This absorption is attributed to H2O ice in the coma grains. The spatial distribution and expansion velocity of the absorption at 2.04 μm indicate that these grains are associated with the outburst. The constancy of the absorption feature indicates no appreciable sublimation over 1.7 h. The unresolved nucleus has a flux density consistent with a 40±10 km diameter assuming a 4% geometric albedo.  相似文献   

20.
We present new, near-aphelion, time series of photometry of Comet 2P/Encke in Cousins-R band. With these light curves we find that the dominant, synodic rotational periodicity is either P0=11.079±0.009 h or 2P0=22.158±0.012 h. This is in contrast to data from the 1980s published by others that are consistent with 15.08- and 22.6-h periods. Those periods do not satisfy our phased light curves, and also the 1980s data are not easily reconciled with our periods. This could be due to P/Encke having non-principal axis rotation or due to a drift in the rotation period caused by outgassing torques. We observed the comet at five epochs: July, August, September, and October 2001, and September 2002, and the comet was at times intrinsically brighter than expected for a bare nucleus, due to an apparent contribution from an unresolved coma. Three-quarters of the data were obtained in the second and fifth epochs, and we analyzed these two time series using both the phase-dispersion minimization and “WindowCLEAN” techniques. At both epochs and with both techniques strong periodicities were found near frequencies and . By then using visual inspection of the phased light curves to corroborate these frequencies, and by using the data from the other three epochs to properly align light curve features, we were able to derive P0 and 2P0 as the only solutions that satisfy all our observations. The periodicity due to f1 is clearly seen in our data, but we cannot tell from our data alone whether it is a manifestation of the nucleus's shape, non-principal axis rotation, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号