首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plains of Aurorae and Ophir in the equatorial region of Mars display geomorphic evidence indicative of extensive but generally short-lived paleohydrological processes. Elaver Vallis in Aurorae Planum south of Ganges Chasma is an outflow channel system >180 km long, and here inferred to have formed by cataclysmic spillover flooding from a paleolake(s) contained in the Morella crater basin. Ganges Cavus is an enormous 5-km-deep depression of probable collapse origin located in the Morella basin. The fluid responsible for the infilling of the Morella basin likely emerged at least partially through Ganges Cavus or its incipient depression, and it may have been supplied also from small-scale springs in the basin. Similar paleohydrological processes are inferred also in Ophir Planum. It is reasonable to assume that water, sometimes sediment-laden and/or mixed with gases, was the responsible fluid for these phenomena although some of the observed features could be explained by non-aqueous processes such as volcanism. Water emergence may have occurred as consequences of ground ice melting or breaching of cryosphere to release water from the underlying hydrosphere. Dike intrusion is considered to be an important cause of formation for the cavi and smaller depressions in Aurorae and Ophir Plana, explaining also melting of ground ice or breaching of cryosphere. Alternatively, the depressions and crater basins may have been filled by regional groundwater table rising during the period(s) when cryosphere was absent or considerably thin. The large quantities of water necessary for explaining the paleohydrological processes in Aurorae and Ophir Plana could have been derived through crustal migration from the crust of higher plains in western Ophir Planum where water existed in confined aquifers or was produced by melting of ground ice due to magmatic heating or climatic shift, or from a paleolake in Candor Chasma further west.  相似文献   

2.
The Valles Marineris canyon system of Mars is closely related to large flood channels, some of which emerge full born from chaotic terrain in canyon floors. Coprates Chasma, one of the largest Valles Marineris canyons, is connected at its west end to Melas Chasma and on its east end to chaotic terrain-filled Capri and Eos Chasmata. The area from central Melas to Eos Chasmata contains a 1500 km long and about 1 km deep depression in its floor. Despite the large volumes of groundwater that likely discharged from chaotic terrain in this depression, no evidence of related fluvial activity has thus far been reported. We present an analysis of the regional topography which, together with photogeologic interpretation of available imagery, suggests that ponding due to late Hesperian discharge of water possibly produced a lake (mean depth 842 m) spanning parts of the Valles Marineris depression (VMD). Overflow of this lake at its eastern end resulted in delivery of water to downstream chaos regions and outflow channels. Our ponding hypothesis is motivated primarily by the identification of scarp and terrace features which, despite a lateral spread of about 1500 km, have similar elevations. Furthermore, these elevations correspond to the maximum ponding elevation of the region (−3560 m). Simulated ponding in the VMD yields an overflow point at its eastern extremity, in Eos Chasma. The neighborhood of this overflow point contains clear indicators of fluvial erosion in a consistent east-west orientation.  相似文献   

3.
We have used data from the Mars Reconnaissance Orbiter to study 30-80 m thick light-toned layered deposits on the plateaus adjacent to Valles Marineris at five locations: (1) south of Ius Chasma, (2) south of western Melas Chasma, (3) south of western Candor Chasma, (4) west of Juventae Chasma, and (5) west of Ganges Chasma. The beds within these deposits have unique variations in brightness, color, mineralogy, and erosional properties that are not typically observed in light-toned layered deposits within Valles Marineris or many other equatorial areas on Mars. Reflectance spectra indicate these deposits contain opaline silica and Fe-sulfates, consistent with low-temperature, acidic aqueous alteration of basaltic materials. We have found valley or channel systems associated with the layered deposits at all five locations, and the volcanic plains adjacent to Juventae, Ius, and Ganges exhibit inverted channels composed of light-toned beds. Valleys, channels, and light-toned layering along the walls of Juventae and Melas Chasmata are most likely coeval to the aqueous activity that affected the adjacent plateaus and indicate some hydrological activity occurred after formation of the chasmata. Although the source of water and sediment remains uncertain, the strong correlation between fluvial landforms and light-toned layered deposits argues for sustained precipitation, surface runoff, and fluvial deposition occurring during the Hesperian on the plateaus adjacent to Valles Marineris and along portions of chasmata walls.  相似文献   

4.
Layered deposits have been observed in different locations at the surface of Mars, as crater floors and canyons systems. Their high interest relies in the fact they imply dynamical conditions in their deposition medium. Indeed, in opposition to most of the rocks of the martian surface, which have a volcanic origin, bright layered deposits seems to be sedimentary outcrops.Capri Chasma, a canyon located at the outlet of Valles Marineris, exhibits such deposits called Interior Layered Deposits (ILD). A large array of visible and infrared spacecraft data were used to build a Geographic Information System (GIS). We added HiRiSE images, from the recent MRO mission, which offer a spatial resolution of 25 cm per pixel. It allowed the mapping and the analysis of morphologies in the canyon. We highlighted that the ILD are several kilometers thick and flat-top stratified deposits. They overlap the chaotic floor. They are surrounded and cut by several flow features that imply that liquid water was still acting after the formation of these stratified deposits. The density of crater on the floor of Capri Chasma was quantified. The current topography was aged to 3 Gyr. All these morphological information allow us to suggest a plausible geological history for Capri Chasma. We propose that the Interior Layered Deposits have formed during the Hesperian, during or after the opening of the canyon. Some observations argue that water discharges have happened at several times before and just after the formation of the ILD. Liquid water must have played a major role in the formation of these deposits after 3.5 Gyr, implying that it was present in surface at least locally and temporarily. If this can be applied to ILD in others canyons of Valles Marineris, it would imply that liquid water was stable in surface or sub-surface during the Hesperian. Or in the actual conditions, with a cold and dry martian surface, long-term standing water bodies are not possible. Thus we suggest that either the climate at the Hesperian was cold, but wetter, or as warm as the Noachian climate, what is less likely. Nevertheless, the global climate change which has occurred at the beginning of Mars history may have been later than announced.  相似文献   

5.
Uzboi Vallis (centered at ∼28°S, 323°E) is ∼400 km long and comprises the southernmost segment of the northward-draining Uzboi-Ladon-Morava (ULM) meso-scale outflow system that emerges from Argyre basin. Bond and Holden craters blocked the valley to the south and north, respectively, forming a Late Noachian-to-Hesperian paleolake basin that exceeded 4000 km3. Limited CRISM data suggest lake deposits in Uzboi and underlying basin floor incorporate relatively more Mg-clays and more Fe-clays, respectively. The short-lived lake overflowed and breached Holden crater’s rim at an elevation of −350 m and rapidly drained into the crater. Fan deltas in Holden extend 25 km from the breach and incorporate meter-sized blocks, and longitudinal grooves along the Uzboi basin floor are hundreds of meters long and average 60 m wide, suggesting high-discharge drainage of the lake. Precipitation-derived runoff rather than regional groundwater or overflow from Argyre dominated contributions to the Uzboi lake, although the failure of most tributaries to respond to a lowering of base level indicates their incision largely ended when the lake drained. The Uzboi lake may have coincided with alluvial and/or lacustrine activity in Holden, Eberswalde, and other craters in southern Margaritifer Terra, where fluvial/lacustrine activity may have required widespread, synoptic precipitation (rain or snow), perhaps associated with an ephemeral, global hydrologic system during the Late Noachian into the Hesperian on Mars.  相似文献   

6.
An extensive region of low, sinuous ridges occupies the Hesperian plateau above Echus Chasma in the upper Kasei Valles, Mars. The ridges have lengths of up to 270 km, heights of 100 m and widths of 10 km. The total volume of the ridge material is 6×1011 m3. In this paper, volcanic flows, depositional and erosional features are discussed using Mars Observer Laser Altimeter (MOLA), THEMIS and Mars Orbiter Camera (MOC) imagery and a chronology that places the ridge formation in the Late Hesperian is developed.The plateau is bounded to the north and west by more recent Late Hesperian and Amazonian lava flows. The plateau floor suddenly changes from being relatively smooth, to elevated, rough, hummocky terrain that extends eastwards to Echus Chasma. This rough terrain is penetrated by 2 km broad, shallow entrant channels that join with the canyons of Echus Chasma. The sinuous ridges appear to control the surface drainage associated with the entrant channels.The sinuous ridges’ size and morphology are similar to those associated with volcanic ridge eruptions. Their degraded structure is reminiscent of Moberg ridges. The rough, hummocky terrain is interpreted as glacial outwash, subsequently eroded by short-lived floods associated with ridge eruptions. The presence of both volcanic and glacial structures on the Echus Plateau raises the possibility that the ridge system arose from subglacial, volcanic events. The resulting jokulhlaups eroded the broad, entrant channels. As surface flow declined, groundwater flows dominated and canyon heads eroded back along the entrant channels, by sapping.  相似文献   

7.
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems, and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to have sourced outburst floodwaters that sculpted the outflow channels, and ponded to form various hypothesized oceans, seas, and lakes episodically through time. These floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains. Stratigraphy, geomorphology, and topography record at least one great Noachian-Early Hesperian northern plains ocean, a Late Hesperian sea inset within the margin of the high water marks of the previous ocean, and a number of widely distributed minor lakes that may represent a reduced Late Hesperian sea, or ponded waters in the deepest reaches of the northern plains related to minor Tharsis- and Elysium-induced Amazonian flooding.  相似文献   

8.
We investigate the sulfate and iron oxide deposits in Ophir Chasma, Mars, based on short-wave infrared data from the Compact Reconnaissance Imaging Spectrometer for Mars - CRISM and from the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité - OMEGA. Sulfates are detected mainly in two locations. In the valley between Ophir Mensa and the southern wall of Ophir Chasma, kieserite is found both within the slope of Ophir Mensa, and superposed on the basaltic wall of the chasm. Here, kieserite is unconformably overlain by polyhydrated sulfate deposits and iron oxides. Locally, jarosite and unidentified phases with absorptions at 2.21 μm or 2.23 μm are detected, which could be mixtures of jarosite and amorphous silica or other poorly crystalline phases.The second large sulfate-rich outcrop is found on the floor of the central valley. Although the same minerals are found here, polyhydrated sulfates, kieserite, iron oxides, and locally a possibly jarosite-bearing phase, this deposit is very distinct. It is not layered, almost horizontal, and located at a much lower elevation of below −4250 m. Kieserite superposes polyhydrated sulfate-rich deposits, and iron oxides form lags.The facies of sulfate formation remains unclear, and could be different for the two locations. A formation in a lake, playa or under a glacier is consistent with the mineralogy of the central valley and its flat, low-lying topography. This is not conceivable for the kieserite deposits observed south of Ophir Mensa. These deposits are observed over several thousands of meters of elevation, which would require a standing body of water several thousands of meters deep. This would have lead to much more pervasive sulfate deposits than observed. These deposits are therefore more consistent with evaporation of groundwater infiltrating into previously sulfate-free light-toned deposits. The overlying polyhydrated sulfates and other mineral phases are observed in outcrops on ridges along the slopes of the southern chasm wall, which are too exposed to be reached by groundwater. Here, a water supply from the atmosphere by rain, snow, fog or frost is more conceivable.  相似文献   

9.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

10.
Chris H. Okubo 《Icarus》2010,207(1):210-21
The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.  相似文献   

11.
Ares Vallis is one of the greatest outflow channels of Mars. Using high-resolution images of recent missions to Mars (MGS, 2001 Odyssey, and Mars Express), we investigated Ares Vallis and its valley arms, taking advantage of 3-dimensional analysis performed using the high-resolution stereo capability of the Mars Express High Resolution Stereo Camera (HRSC). In our view, Ares Vallis is characterized by catastrophic flood landscapes partially superimposed by ice-related morphologies. Catastrophic flood landforms include erosional terraces, grooved terrains, streamlined uplands, giant bars, pendant bars, and cataract-like features. Ice-related morphologies include probable kame features, thermokarstic depressions, and patterned grounds. Our investigations outline that throughout the Hesperian age, Ares Vallis and its valley arms had been sculpted by several, time-scattered, catastrophic floods, originating from Iani, Hydaspis and Aram Chaos. Geomorphological evidence suggests that catastrophic floods were ice-covered, and that climatic conditions of Mars at this time were similar to those of the present day. At the end of each catastrophic flood, ice masses grounded, forming a thick stagnant dead-ice body. Each catastrophic flood was followed by a relatively brief period of warmer-wetter climatic conditions, originated as a consequence of catastrophic flooding. During such periods thermokarstic depressions originated, liquid water formed meandering channels, and ice-contact deposits were emplaced by ice-walled streams. Finally, the climate turned into cold-dry conditions similar to the present-day ones, and ice masses sublimated.  相似文献   

12.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ∼0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions.  相似文献   

13.
We present results of our morphologic and stratigraphic investigations in the Amenthes region for which our observations suggest a complex spatial and temporal interrelation between volcanic and possibly water-related processes. We have produced a series of self-consistent geological maps and a stratigraphic correlation chart that show the spatial and temporal distribution of volcanic, fluvial and tectonic processes.The Amenthes region consists of a broad trough-like topographic depression that has served as a path for the supply of materials from Hesperia Planum to Isidis Planitia. It is most likely that Hesperia Planum and, in particular the area north of Hesperia Planum, including Tinto Vallis, Palos crater and the surrounding dissected highlands have acted as a source region for materials that were transported into the Amenthes trough and farther into the Isidis basin. The Amenthes trough, as well as the graben of Amenthes Fossae were formed after the Isidis impact in the Noachian and represent likely the oldest features in the Amenthes region. Dendritic valley networks, that bear evidence for surface runoff, have dissected the highlands adjacent to Amenthes Planum and within the Tinto Vallis and Palos crater region before ∼3.7 Ga. The ridged volcanic plains located near the Palos crater and Tinto Vallis region, within Amenthes Planum as well as within the Isidis transitional plains were formed between ∼3.5 and 3.2 Ga and represent the volcanic activity which resulted in the flooding of the Amenthes trough. The sinuous channel of Tinto Vallis was formed in the Hesperian (?3.5 Ga) and shows characteristics, which are consistent with both ground water sapping and igneous processes. The Palos crater outflow channel was formed nearly at the same time as Tinto Vallis, between ∼3.5 Ga and ∼3.2 Ga and postdates the volcanic flooding of the Amenthes trough in the Hesperian. Small valleys (∼3.4-2.8 Ga) incised into the ridged plains of Amenthes Planum appear also within the transitional plains located between the Amenthes plains and the Isidis interior plains. Our model ages show that Tinto Vallis, the Palos crater outflow channel as well as the small valleys are unlikely formed at the same time and by the same processes as the dendritic valley networks and represent an episode that clearly postdates the volcanic activity.  相似文献   

14.
We examine hypotheses for the formation of light-toned layered deposits in Juventae Chasma using a combination of data from Mars Global Surveyor's Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and Thermal Emission Spectrometer (TES), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). We divide Juventae Chasma into geomorphic units of (i) chasm wall rock, (ii) heavily cratered hummocky terrain, (iii) a mobile and largely crater-free sand sheet on the chasm floor, (iv) light-toned layered outcrop (LLO) material, and (v) chaotic terrain. Using surface temperatures derived from THEMIS infrared data and slopes from MOLA, we derive maps of thermal inertia, which are consistent with the geomorphic units that we identify. LLO thermal inertias range from ∼400 to 850 J m−2 K−1 s−1/2. Light-toned layered outcrops are distributed over a remarkably wide elevation range () from the chasm floor to the adjacent plateau surface. Geomorphic features, the absence of small craters, and high thermal inertia show that the LLOs are composed of sedimentary rock that is eroding relatively rapidly in the present epoch. We also present evidence for exhumation of LLO material from the west wall of the chasm, within chaotic and hummocky terrains, and within a small depression in the adjacent plateau. The data imply that at least some of the LLO material was deposited long before the adjacent Hesperian plateau basalts, and that Juventae Chasma underwent, and may still be undergoing, enlargement along its west wall due to wall rock collapse, chaotic terrain evolution, and exposure and removal of LLO material. The new data allow us to reassess possible origins of the LLOs. Gypsum, one of the minerals reported elsewhere as found in Juventae Chasma LLO material, forms only at low temperatures () and thus excludes a volcanic origin. Instead, the data are consistent with either multiple occurrences of lacustrine or airfall deposition over an extended period of time prior to emplacement of Hesperian lava flows on the plateau above the chasm.  相似文献   

15.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   

16.
The geomorphology and topography of the Cerberus Plains region of Mars show three spatially and temporally distinct, young, aqueous flood channel systems. Flood geomorphology in each of these channels, as seen in Mars Orbiter Camera images, consists of streamlined forms, longitudinal lineations, and a single occurrence of transverse dunes, features similar to those in the flood-carved terrain of the Channeled Scabland in the northwestern United States. As additional geomorphic evidence of flooding, small cones (interpreted as phreatic) are found preferentially in the channels or at their distal ends. Glaciers, lava flows, and CO2-charged density flows are each inconsistent with these geomorphic features. Mars Orbiter Laser Altimeter data show two of the three channel systems (Athabasca Valles and an unnamed northern channel system) emanating from the Cerberus Fossae; we suggest that the third channel system (Marte Vallis) also originated at the fissures. The discharges for two of the three systems (Athabasca Valles and Marte Vallis) have been estimated from surface topography to have been on the order of 106 m3/s. Crater counts indicate that the channels are not only young (extreme Late Amazonian), but also were carved asynchronously. Geomorphic evidence suggests that two of the channels (Athabasca and Marte Valles) experienced more than one flood. Emanation from volcanotectonic fissures instead of chaotic terrain distinguishes these Cerberus Plains channels from the larger, older circum-Chryse channels. Groundwater must have collected in a liquid state prior to flood onset to flow at the estimated discharge rates. Lack of large-scale subsidence near the channels' origination points along the Cerberus Fossae indicates that this groundwater was at least several kilometers deep.  相似文献   

17.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   

18.
The survey of the hydrogeologic system formed by Gusev crater and Ma'adim Vallis (Aeolis subquadrangle of Mars) points out evidence for the existence of an ice-covered lake in Gusev crater. A first lake was formed by the drainage of the aquifer in the region surrounding Gusev before the entry of Ma'adim Vallis in the crater. The existence of a former lake in Gusev is deduced from the morphology of the Ma'adim delta. Its comparison with terrestrial Antarctic analogs argues for the presence of an ice-covered lake in Gusev at the time that the southern part of the crater's rampart was breached by Ma'adim first release, and for a subice–lacustrine construction of the valley's delta. Our survey shows that Ma'adim Vallis may have entered Gusev crater as late as Late Hesperian/Early Amazonian as part of a second lake episode. The relationship between the variation of the Gusev lake water-level, the volume of the lake, and the surface of the lake bed is established by our bathymetric model. The elevation of the former lake is deduced from the elevation of the mesa-like structures in the delta of Ma'adim Vallis. Furthermore, the correlation of the crater frequency of Gusev rampart with Mars' stratigraphic age shows that lakes may have occupied Gusev crater over a period of time covering 2 Gyrs., from the formation of the crater to the last episode of water release from Ma'adim Vallis. Though it is most likely that the lake was episodical, the recurrence of abundant water in Gusev crater makes this site a high priority for missions, either for martian resource exploration, or for the search of life.  相似文献   

19.
The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically controlled waterways associated with these features. This hypothesis would explain why these features were not completely destroyed. During the Late Amazonian, high-obliquity conditions may have led to the removal of large volumes of volatiles and sediments being eroded from Planum Boreum, which then may have been re-deposited as thick, circum-polar plains. Transition into low obliquity ∼5 myr ago may have led to progressive destabilization of these materials leading to collapse and pedestal crater formation. Our model does not contraindicate possible large-scale ponding of fluids in the northern lowlands, such as for example the formation of water and/or mud oceans. In fact, it provides a complementary mechanism involving large-scale groundwater discharges within the northern lowlands for the emplacement of fluids and sediments, which could have potentially contributed to the formation of these bodies. Nevertheless, our model would spatially restrict to surrounding parts of the northern plain either the distribution of the oceans or the zones within these where significant sedimentary accumulation would have taken place.  相似文献   

20.
Valles Marineris offers a deep natural insight into the upper crust of Mars. The morphology of its slopes reflects the properties of the wall materials, thus constraining in models of composition and evolution of the upper layers of the Martian crust. Hence, knowledge about the lithological composition of these wall rocks is of major interest to the understanding of the geological and climatic history of Mars. This study investigates mechanical rock mass parameters of the northern wall of eastern Candor Chasma (between 290°E and 296°E longitude, −8° to −5° latitude). These are inferred from its present-day morphology and a proposed slope-forming history, applying a distinct element code to simulate the stability and the tectonic history of this slope within a parameter study. Additionally, a mathematical denudation model is applied to take into account the effect of exogenic processes on the slope. The study results show that two periods of normal faulting in conjunction with massive interim denudational scarp recess is a valid model for the evolution of the northern wall of eastern Candor Chasma. The estimated rate of scarp recess of 60 m Myr−1 is comparable with certain terrestrial scarp retreat rates. The best-fit models yield a homogenous distribution of low-level rock mass strength and deformability properties distributed over the entire stratigraphic column of the northern wall of eastern Candor Chasma. The values are 5.0 (±0.7) MPa for the uniaxial compressive strength, 1.6 (±0.2) MPa for the Brazilian tensile strength, 4.7 (±1.5) GPa for the Young's modulus, 0.2 (±0.15) for the Poisson's ratio, 22 (±2)° for the internal friction angle, 1.6 (±0.2) MPa for the cohesion and 2200 (±500) kg m−3 for the density. This study favors columnar jointed basalt as the material that builds up the northern wall of eastern Candor Chasma and other walls within central Valles Marineris. The best-fit denudational model of the upper slope section of the northern wall of eastern Candor Chasma indicates a distinct cap rock unit of lesser susceptibility to denudation than the wall rock below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号