首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
We report the detection of Comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 μm Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size ?100 μm. The neck-line is composed of similar sized particles, but younger in age. Together, our observations and simulations suggest grains 100 μm and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87±0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (∼10−3) of a trail grain impacting with Rosetta during approach and orbit insertion.  相似文献   

2.
We present an analysis of the observations of the Deep Impact event performed by the OSIRIS narrow angle camera aboard the Rosetta spacecraft over two weeks, in an effort to characterize the cometary dust grains ejected from the nucleus of Comet 9P/Tempel 1. We adopt a Monte Carlo approach to generate calibrated synthetic images, and a linear combination of them is fitted to the calibrated images so as to determine the physical parameters of the dust cloud. Our model considers spherical olivine particles with a density of 3780 kg m−3. It incorporates constraints on the direction of the cone of emission coming from additional images obtained at Pic du Midi observatory, and constraints on the dust terminal velocities coming from the physics of the impact. We find that the slope of the differential dust size distribution of grains with radii <20 μm (β>0.008) is 3.1±0.3, a value typical of cometary dust tails. This shows that there is no evidence in our data for an enhancement in sub-micron particles in the ejecta compared to the typical dust distribution of active comets. We estimate the mass of particles with radii <1.4 μm (β>0.14) to be 1.5±0.2×105 kg. These particles represent more than 80% of the cross-section of the observed dust cloud. The mass carried by larger particles depends whether the gas significantly increases the kinetic energy of the grains in the inner coma; it lies in the range 1-14×106 kg for particles with radii <100 μm (β>0.002). We obtain the distribution of terminal velocities reached by the dust after the dust-gas interaction which is very well constrained between 10 and 600 m s−1. It is characterized by Gaussian with a maximum at about 190 m s−1 and a width at half maximum of 150 m s−1.  相似文献   

3.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

4.
We report on the Hubble Space Telescope program to observe periodic Comet 9P/Tempel 1 in conjunction with NASA's Deep Impact Mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km pixel−1) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0±0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC.  相似文献   

5.
The Deep Impact (DI) spacecraft encountered Comet 9P/Tempel 1 on July 4th, 2005 and observed it with several instruments. In particular, we obtained infrared spectra of the nucleus with the HRI-IR spectrometer in the wavelength range of 1.0-4.9 μm. The data were taken before impact, with a maximum resolution of ∼120 m per pixel at the time of observation. From these spectra, we derived the first directly observed temperature map of a comet nucleus. The surface temperature varied from 272±7 to 336±7 K on the sunlit hemisphere, matching the surface topography and incidence angle. The derived thermal inertia is low, most probably <50 W K−1 m−2 s1/2. Combined with other arguments, it is consistent with the idea that most of rapidly varying thermal physical processes, in particular the sublimation of volatiles around perihelion, should occur close to the surface. Thermal inertia is sufficient to explain the temperature map of the nucleus of Comet Tempel 1 to first order, but other physical processes like roughness and self-radiation are required to explain the details of the temperature map. Finally, we evaluated that the Standard Thermal Model is a good approximation to derive the effective radius of a cometary nucleus with an uncertainty lower than ∼10% if combined with a thermal infrared light curve.  相似文献   

6.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   

7.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   

8.
P. Oberc 《Icarus》2004,171(2):463-486
Small-scale dust structures, SDSs, altogether ∼35 events with extent ∼30-220 km, have been recognized owing to electric field records, mostly near the closest approach of Vega-2 to Halley's nucleus. Several (8-9) morphological forms of SDS have been identified, and all they make one family. Among the family members, the key form (with respect to which, all other forms can be regarded as degenerate) is a sequence of 3-5 dust clouds. The morphological forms represent various Vega-2 passes through SDSs at different stages of development. SDSs observable as the key form consisted of several fairly regularly spaced dust subpopulations, whose plane of symmetry was parallel to the comet orbit plane. That regularity together with specific features of morphological forms strongly constrain disintegration scenarios and dynamics of fragments, and allow to draw a number of conclusions, the main of which are: SDS parent bodies were ice-free dust aggregates lifted from the nucleus near the comet perihelion, whose masses were in the range ∼0.1-1 of the biggest emitted mass (mass of a body accelerated to the escape velocity, i.e., ∼300-1500 kg); the disintegration scenario comprised a few steps, and the first-step disintegration consisted mainly in consecutive detachments of biggest first-step fragments (BF-SFs) from the parent body; a SDS observable as the key form included the dust minitail of parent body and a few BF-SF minitails, the former one being longer than the latter ones; SDS parent bodies had a fractal-like internal structure, and the BF-SF mass was a few percent of the parent body mass; the thermal conductivity of SDS parent body was less than ∼0.4 W m−1 K−1 or so, while the latent heat of gluing organics was roughly 80 kJ mol−1; the disintegration mechanism was a combination of sintering and sublimation of organics. The multistep disintegration of SDS parent bodies can be reconciled with the basically one-step disintegration of aggregates responsible for the dust boundary (Oberc, P., Icarus 1996, 124, 195-208). The fractal-like structure and the relation between BF-SF mass and parent body mass are in agreement with predictions from the Weidenschilling model of comet formation. Large ice-free dust bodies, in particular SDS parent bodies, can be identified with refractory boulders postulated by some comet nucleus models.  相似文献   

9.
Ignacio Ferrín 《Icarus》2007,187(1):326-331
In support of the Deep Impact Mission, we have updated the secular light curve of 9P/Tempel 1 presented in Paper I [Ferrín, I., 2005. Icarus 178, 493-516], with new data sets. The secular light curves (SLC) of the comet are presented in the log and time plots (Figs. 1 and 2) and provide a clear profile of the overall shape of the envelope. We arrive at the following conclusions: (1) Improved values of 18 photometric parameters are derived including the turn on and turn off points, RON=−3.47±0.05 AU, ROFF=+4.20±0.05 AU, and TON=−410±25 d, TOFF=+555±25 d. (2) The improved SLC shows a most interesting and peculiar shape, with a linear power law of slope n=7.7±0.1 from RON=−3.47 AU to RBP=−2.08±0.05 AU, and then converts to a law with curvature. The break point of the power law at RBP=−2.08 AU, mV(1,R)=14.0±0.1 mag, is interpreted as a change in sublimating something more volatile than water ice (most probably CO2), to water ice sublimation. In other words, the comet's sublimation is controlled by two different substances. (3) The photometric-age (defined in Paper I) and the time-age of the comet [Ferrín, I., 2006. Icarus. In press] are recomputed, and results in a value P-AGE=21±2 and T-AGE=11±2 comet years. Thus 9P is a young comet. (4) The comet is active almost up to aphelion since the turn off point has been determined at ROFF=+4.20±0.05 AU while aphelion takes place at Q=+4.74 AU. (5) The comet exhibits activity post-aphelion which is not understood. Two hypothesis are advanced to explain this behavior.  相似文献   

10.
Ignacio Ferrín 《Icarus》2006,185(2):523-543
We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces. When 133P is plotted in the above diagrams, its location is entirely compatible with those of comets. (2) A positive correlation is found between cometary rotational periods and diameters. One possible interpretation suggest the existence of rotational evolution predicted by several theoretical models. (3) A plot of the historical evolution of cometary nuclei density estimates shows no trend with time, suggesting that perhaps a consensus is being reached. We also find a mean bulk density for comets of 〈ρ〉=0.52±0.06 g/cm3. This value includes the recently determined spacecraft density of Comet 9P/Tempel 1, derived by the Deep Impact team. (4) We have derived values for over 18 physical parameters, listed in the SLC plots, Figs. 6-9. (5) The secular light curve of 133P/Elst-Pizarro exhibits a single outburst starting at +42±4 d (after perihelion), peaking at LAG=+155±10 d, duration 191±11 d, and amplitude 2.3±0.2 mag. These properties are compatible with those of other low activity comets. (6) To explain the large time delay in maximum brightness, LAG, two hypothesis are advanced: (a) the existence of a deep ice layer that the thermal wave has to reach before sublimation is possible, or (b) the existence of a sharp polar active region pointing to the Sun at time = LAG, that may take the form of a polar ice cap, a polar fissure or even a polar crater. The diameter of this zone is calculated at ∼1.8 km. (7) A new time-age is defined and it its found that T-AGE = 80 cy for 133P, a moderately old comet. (8) We propose that the object has its origin in the main belt of asteroids, thus being an asteroid-comet hybrid transition object, an asteroidal belt comet (ABC), proven by its large density. (9) Concerning the final evolutionary state of this object, to be a truly extinct comet the radius must be less than the thermal wave depth, which at 1 AU is ∼250 m (at the perihelion distance of 133P the thermal wave penetrates only ∼130 m). Comets with radius larger than this value cannot become extinct but dormant. Thus we conclude that 133P cannot evolve into a truly extinct comet because it has too large a diameter. Instead it is shown to be entering a dormant phase. (10) We predict the existence of truly extinct comets in the main belt of asteroids (MBA) beginning at absolute magnitude ∼21.5 (diameter smaller than ∼190 m). (11) The object demonstrates that a comet may have an outburst of ∼2.3 mag, and not show any detectable coma. (12) Departure from a photometric R+2 law is a more sensitive method (by a factor of 10) to detect activity than star profile fitting or spectroscopy. (13) Sufficient evidence is presented to conclude that 133P is the first member of a new class of objects, an old asteroidal belt comet, ABC, entering a dormant phase.  相似文献   

11.
We report high-spectral resolution observations of Comet 9P/Tempel 1 before, during and after the impact on 4 July 2005 UT of the Deep Impact spacecraft with the comet. These observations were obtained with the HIRES instrument on Keck 1. We observed brightening of both the dust and gas, but at different rates. We report the behavior of OH, NH, CN, C3, CH, NH2 and C2 gas. From our observations, we determined a CN outflow velocity of at least 0.51 km s−1. The dust color did not change substantially. To date, we see no new species in our spectra, nor do we see any evidence of prompt emission. From our observations, the interior material released by the impact looks the same as the material released from the surface by ambient cometary activity. However, further processing of the data may uncover subtle differences in the material that is released as well as the time evolution of this material.  相似文献   

12.
13.
We present results on the energy balance of the Deep Impact experiment based on analysis of 180 infrared spectra of the ejecta obtained by the Deep Impact spacecraft. We derive an output energy of 16.5 (+9.1/−4.1) GJ. With an input energy of 19.7 GJ, the error bars are large enough so that there may or may not be a balance between the kinetic energy of the impact and that of outflowing materials. Although possible, no other source of energy other than the impactor or the Sun is needed to explain the observations. Most of the energy (85%) goes into the hot plume in the first few seconds, which only represents a very small fraction (<0.01%) of the total ejected mass. The hot plume contains 190 (+263/−71) kg of H2O, 1.6 ± 0.5 kg of CO2, 8.2 (+11.3/3.1) kg of CO (assuming a CO/H2O ratio of 4.3%), 27.9 (+25.0/−8.9) kg of organic material and 255 ± 128 kg of dust, while the ejecta contains ∼107 kg of materials. About 12% of the energy goes into the ejecta (mostly water) and 3% to destroy the impactor. Volatiles species other than H2O (CO2, CO or organic molecules) contribute to <7% of the energy balance. In terms of physical processes, 68% of the energy is used to accelerate grains (kinetic energy), 16% to heat them, 6% to sublimate or melt them and 10% (upper limit) to break and compress dust and/or water ice aggregates into small micron size particles. For the hot plume, we derive a dust/H2O ratio of 1.3 (+1.9/−1.0), a CO2/H2O ratio of 0.008 (+0.009/−0.006), an organics/H2O ratio of 0.15 (+0.29/−0.11) and an organics/dust ratio of 0.11 (+0.30/−0.07). This composition refers to the impact site and is different from that of the bulk nucleus, consistent with the idea of layers of different composition in the nucleus sub-surface. Our results emphasize the importance of laboratory impact experiments to understand the physical processes involved at such a large scale.  相似文献   

14.
We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80 m/pixel, and to image the crater made during the encounter, if possible. In total, ∼500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045 ± 0.001 mag deg−1 from 1° to 16°. Cometary activity was observed to begin inbound near r ∼ 4.0 AU and the activity ended near r ∼ 4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of ∼20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r = 2.24 AU emission from C2 and C3 were evident. In December 2004 the production rate of CN increased from 1.8 × 1023 mol s−1 to QCN = 2.75 × 1023 mol s−1 in early January 2005 and 9.3 × 1024 mol s−1 on June 6, 2005 at r = 1.53 AU.  相似文献   

15.
Ignacio Ferrín 《Icarus》2008,197(1):169-182
We present the secular light curve of Comet 2P/Encke in two phase spaces, the log plot, and the time plot. The main conclusions of this work are: (a) The comet shows activity at perihelion and aphelion, caused by two different active areas: Source 1, close to the south pole, active at perihelion, and Source 2, at the north pole, centered at aphelion. (b) More than 18 physical parameters are measured from the secular light curves, many of them new, and are listed in the individual plots of the comet. Specifically we find for Source 1 the location of the turn on and turn off points of activity, RON=−1.63±0.03 AU, ROFF=+1.49±0.20 AU, TON=−87±5 d, TOFF=+94±15 d, the time lag, LAG(q)=6±1 d, the total active time, TACTIVITY=181±16 d, and the amplitude of the secular light curve, ASEC(1,1)=4.8±0.1 mag. (c) From this information the photometric age and the time-age defined in Ferrín [2005a. Icarus 178, 493-516; 2006. Icarus 185, 523-543], can be calculated, and we find P-AGE = 97 ± 8 comet years and T-AGE = 103 ± 9 comet years (cy). Thus Comet 2P/Encke is an old comet entering the methuselah stage (100 cy < age). (d) The activity at aphelion (Source 2), extends for TACTIVITY=815±30 d and the amplitude of the secular light curve is ASEC(1,Q)=3.0±0.2 mag. (e) From a new phase diagram an absolute magnitude and phase coefficient for the nucleus are determined, and we find RNUC(1,1,0)=15.05±0.14, and β=0.066±0.003. From this data we find a nucleus effective diameter DEFFE=5.12(+2.5;−1.7) km. These values are not much different from previous determinations but exhibit smaller errors. (f) The activity of Source 1 is due to H2O sublimation because it shows curvature. The activity of Source 2 might also be due to H2O due to the circumstantial situation that the poles point to the Sun at perihelion and aphelion. (g) We found a photometric anomaly at aphelion, with minimum brightness between +393 and +413 days after perihelion that may be an indication of topography. (h) We have re-reduced the 1858 secular light curve of Kamel [1991. Icarus 93, 226-245]. There are secular changes in 7 physical parameters, and we achieve for the first time, an absolute age calibration. We find that the comet entered the inner Solar System and began sublimating in 1645±40 AD. (i) It is concluded that the secular light curve can place constraints on the pole orientation of the nucleus of some comets, and we measure the ecliptic longitude of the south pole of 2P/Encke equal to 213.2±4.5°, in excellent agreement with other determinations of this parameter, but with smaller error. (j) Using the observed absolute magnitude of 1858 and 2003 and a suitable theoretical model, the extinction date of the comet is determined. We obtain ED=2056±3 AD, implying that the comet's lifetime is 125±12 revolutions about the Sun after entering the inner Solar System.  相似文献   

16.
In 2006, Earth encountered a trail of dust left by Comet 55P/Tempel-Tuttle two revolutions ago, in A.D. 1932. The resulting Leonid shower outburst was observed by low light level cameras from locations in Spain. The outburst peaked on 2006 Nov. 19d 04h39m ± 3m UT (predicted: 19d 04h50m ± 15m UT), with a FWHM of 43 ± 10 min (predicted: 38 min), at a peak rate of ZHR=80±10/h (predicted: 50-200 per hour). A low level background of older and brighter Filament Leonids (χ∼2.1) was also present, which dominated rates for Leonids brighter than magnitude +4. The 1932-dust outburst was detected among Leonids of +0 magnitude and brighter. These outburst Leonids were much brighter than expected, with a magnitude distribution index χ=2.60±0.15 (predicted: χ=3.47 and up). Trajectories and orbits of 24 meteors were calculated, most of which are part of the Filament component. Those that were identified as 1932-dust grains penetrated just as deep as Leonids in past encounters. We conclude that larger meteoroids than expected were present in the tail of the 1932-dust trail and meteoroids did not end up there because of low density. We also find that the radiant position of meteors in the Filament component scatter in a circle with radius 0.39°, which is wider than in 1998, when the diameter was 0.09°. This supports the hypothesis that the Filament component consists of meteoroids in mean-motion resonances.  相似文献   

17.
Lisse  C. M.  Fernández  Y. R.  A'hearn  M. F.  Kostiuk  T.  Livengood  T. A.  Käufl  H. U.  Hoffmann  W. F.  Dayal  A.  Ressler  M. E.  Hanner  M. S.  Fazio  G. G.  Hora  J. L.  Peschke  S. B.  Grün  E.  Deutsch  L. K. 《Earth, Moon, and Planets》1997,78(1-3):251-257
We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996–1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r−1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s−1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s−1, a dust-to-gas ratio of ∶5, and an albedo of 39%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b?1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (VR)=0.39±0.06 and (BV)=0.73±0.06 (). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ∼11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha, N.H., Belton, M.J.S., Meech, K.J., 2005. Icarus 175, 194-214]—taken just 2-3 weeks before the current data set—and we show that a rotation period of just over 11 h works extremely well for the combined data set. The resulting best-fit period is 11.083±0.003 h, consistent with the Fernández et al. value.  相似文献   

19.
We present inner-coma dust imaging of Comet Hyakutake (1996 B2) obtained on 11 consecutive nights in late March 1996, an interval including a major outburst and the comet’s closest approach to Earth. The evolution of the outburst morphology is followed, along with the motion along the tail of several outburst fragments. Two spiral dust jets—a primary jet, along with a much weaker secondary jet—are visible throughout the interval and are produced by two source regions on a rotating nucleus. These are examined as a function of rotational phase and viewing geometry, with their appearance changing from a nearly face-on view on March 18 to side-on by March 28. The dust outflow velocity as a function of distance from the nucleus is derived, with the dust continuing to accelerate to a distance of 4000 km or more and reaching an average outflow velocity of 0.38 km s−1 between 3000 and 8000 km. We present details of our Monte Carlo modeling of the jets and our methodology of fitting the model to the images. The modeling yields the pole orientation of the nucleus, with an obliquity of approximately 108°, corresponding to an RA of 13h41m and a Dec of −1.1°. For an assumed spherical nucleus, the primary active region is centered at approximately −66° latitude, has a radius of about 56°, and therefore covers about 22% of the surface. The source of the secondary jet is at a latitude of −28°, has a radius of about 16°, and is located at a longitude nearly 180° away from the primary source. Estimated uncertainties for the pole orientation and the source locations and sizes are each about 3°. This solution for the nucleus orientation and source locations explains the strong asymmetry in measured production rates before and after perihelion in radio observations (Biver et al., 1999, Astron. J. 118, 1850-1872). The modeling also tightly constrains the sidereal rotation period as 0.2618 ± 0.0001 day, completely consistent with the expected +0.0003 day difference from the observed solar rotation period of 0.2614 ± 0.0004 day determined by Schleicher and Osip (2002, Icarus 159, 210-233), given the pole orientation and position of the comet in its orbit.  相似文献   

20.
We suggest that the regions of smooth terrain which were observed on Comet 9P/Tempel 1 by the Deep Impact spacecraft were formed by blowing ice grains in an outburst of gas from the comet interior. When gas is released from 10 to 20 m deep layers which were heated to 135 K, it is released quiescently onto the surface by individual conduits. If large amounts of gas are released, the drainage system cannot release them fast enough and wider interconnected channels are formed, leading to sudden outburst of gas. Instability triggering a sudden shift of flow is well known in subglacial drainage of water. The ballistic trajectory of the ice particles reach a distance of 3 km in the atmosphereless comet, whose gravity is 0.034 cm s−1, if ejected at an angle of 45° at a speed of 95 cm s−1. This speed is close to the speeds measured in laboratory experiments: 167, 140×sini and 167 cm s−1, for particles of 0.3, 1000 and 14-650 μm, respectively. Blowing of ice grains can overcome the 1650 m long horizontal section of smooth terrain i1 (Fig. 1), whereas simple flow of material downhill would stop close to the foot of the hill. The ice particles at the end of their trajectory have a horizontal velocity component and this low velocity ballistic sedimentation would lead to formation of lineaments on the smooth terrain, like in solid-particulate volcanic eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号