首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《地学前缘(英文版)》2018,9(6):1849-1858
There are four main types of natural diamonds and related formation processes. The first type comprises the interstellar nanodiamond particles. The second group includes crustal nano-and micron-scale diamonds associated with coals, sediments and metamorphic rocks. The third one includes nanodiamonds and microndiamonds associated with secondary alteration and replacing of mafic and ultramafic rocks.The fourth one includes macro-, micron-and nano-sized mantle diamonds which are associated with kimberlites, mantle peridotites and eclogites. Each diamond type has its specific characteristics. Nanosized diamond particles of lowest nanometers in size crystallize from abiotic organic matter at lower pressures and temperatures in space during the stages of protoplanetary disk formation. Nano-sized diamonds are formed from organic matter at P-T exceeding conditions of catagenesis stage of lithogenesis. Micron-sized diamonds are formed from fluids at P-T exceeding supercritical water stability.Macrosized diamonds are formed from metal-carbon and silicate-carbonate melts and fluids at P-T exceeding 1150℃ and 4.5 GPa. Nitrogen and hydrocarbons play an important role in diamond formation.Their role in the formation processes increases from macro-sized to nano-sized diamond particles.Introduction of nitrogen atoms into the diamond structure leads to the stabilization of micron-and nanosized diamonds in the field of graphite stability.  相似文献   

2.
Henry O.A. Meyer 《Earth》1977,13(3):251-281
The importance of ultramafic and eclogitic xenoliths in kimberlite as representing the rocks and minerals of the upper mantle has been widely perceived during the last decade. Studies of the petrology and mineral chemistry of these mantle fragments as well as of inclusions in diamond, have led to significant progress in our understanding of the mineralogy and chemistry of the upper mantle. For example, it is now known that textural differences in the ultramafic xenoliths (lherzolite, harzburgite, pyroxenite and websterite) are partially reflected in chemical differences. Thus xenoliths that display a ‘fluidal’ texture, indicative of intense deformation are less depleted in Ca, Al, Na, Fe and Ti than those xenoliths in which granular textures are predominant. It is believed this relative depletion may indicate the sheared (fluidal texture) xenoliths are representative of primary, undifferentiated mantle. This material on partial melting would produce ‘basaltic-type’ material, and leave a residuum whose chemistry and mineralogy is reflected by the granular xenoliths.Also present in kimberlite are large single phase xenoliths that may be either one single crystal (xenocryst, megacryst) or an aggregate of several crystals of the same mineral (discrete xenolith, or discrete nodule). These large single phase samples consist of similar minerals to those occurring in the ultramafic xenoliths but chemically they are distinct in being generally more Fe-rich. The relation between these xenocrysts to their counterparts in the ultramafic xenoliths is unknown. Also unknown, at the present time, is the exact relation between diamond and kimberlite. Evidence obtained from study of the mineral inclusions in diamond suggests that diamond forms in at least two chemically distinct environments in the mantle; one eclogitic, the other, ultramafic. Interestingly, this suggestion is true for diamonds from worldwide localities.The mineral-chemical results of studies on xenoliths and inclusions in diamond have been convincingly interpreted in the light of experimental studies. It is now possible based on several different geothermometers and barometers to determine relatively reasonable physical conditions for the final genesis of many of these mantle rocks. For the most part the final equilibration temperatures range between 1000 and 1400°C and pressure in the region 100–200 km. These conditions are consistent with an upper mantle origin. Future studies will undoubtedly attempt to more concisely, and accurately, define these conditions, as well as understand better the chemical and spatial relationship of the rock-types in the mantle.  相似文献   

3.
The extensive study of a great number of deep-seated xenoliths from Tortonian tuff-breccia pipes in the Hyblean area (Sicily) revealed the following fundamental evidence: (1) typical continental crust rocks are completely absent in the entire xenolith suite; (2) mantle ultramafics are more abundant than gabbroids; (3) sheared oxide–gabbros, closely resembling those from oceanic fracture zones, are relatively common; (4) secondary mineral assemblages, compatible with alteration processes in serpentinite-hosted hydrothermal systems, occur both in peridotites and gabbros. Among the products of this hydrothermal activity, organic compounds, having abiotic origin via Fischer–Tropsch synthesis, occur in some hydrothermally altered gabbro and ultramafic xenoliths, as well as in hydrothermal clays. Moreover, the U–Pb dating of hydrothermal zircon grains, hosted in a xenolith of metasomatized tectonic breccia, indicated an Early–Middle Triassic age of the fossil hydrothermal system. Another line of evidence for the oceanic nature of the Hyblean–Pelagian basement is the complete absence of continental crust lithologies (granites, felsic metaigneous, and metasedimentary rocks) in outcrops and in boreholes, and the oceanic affinity of the Tertiary volcanic rocks from the Hyblean Plateau and the Sicily Channel (Pantelleria and Linosa Islands), which lack of any geochemical signature for continental crust contamination. A reappraisal of existing geophysical data pointed out that serpentinites form the dominant lithologies in the lithospheric basement of the Hyblean–Pelagian area down to a mean depth of 19 km, which represents the regional Moho considered as the serpentinization front, marking the transition from serpentinites to unaltered peridotites. On these grounds, we confirm that Hyblean xenoliths contain mineralogical, compositional, and textural evidence for tectonic, magmatic, and hydrothermal processes indicating the existence of fossil oceanic core complexes, in the geotectonic framework of the Paleo–Mesozoic, ultra-slow spreading, Ionian–Tethys Ocean forming the present Ionian–Hyblean–Pelagian domain.  相似文献   

4.
Seven pyroxene varieties were identified in nepheline syenites and foidolites of the Khibiny pluton: enstatite, ferrosilite, diopside, hedenbergite, augite, aegirine-augite, and aegirine. Enstatite and augite are typical of alkaline and ultramafic rocks of dike series. Ferrosilite was found in country quartzitic hornfels. Diopside is a rock-forming mineral in alkaline and ultramafic rocks, alkali gabbroids, hornfels in xenoliths of volcanic and sedimentary rocks and foyaite, melteigite-urtite that assimilate them, and certain hydrothermal pegmatite veins. Hedenbergite was noted in hornfels from xenoliths of volcanic and sedimentary rocks and in a hydrothermal pegmatite vein at Mount Eveslogchorr. Aegirine-augite is the predominant pyroxene in all types of nepheline syenites, phonolites and tinguaites, foidolites, alkaline and ultramafic rocks of dike series, fenitized wall rocks surrounding the pluton, and xenoliths of Devonian volcanic and sedimentary rocks. Aegirine is an abundant primary or, more often, secondary mineral in nepheline syenites, foidolites, and hydrothermal pegmatite veins. It occurs as separate crystals, outer zones of diopside and aegirine-augite crystals, and homoaxial pseudomorphs after Na-Ca amphiboles. Microprobe analyses of 265 pyroxenes samples allowed us to distinguish ten principal trends of isomorphic replacement and corresponding typomorphic features of pyroxenes. Compositional variations in clinopyroxenes along the sampled 35-km profile from the margin of the Khibiny pluton to its center confirm the symmetric zoning of the foyaite pluton relative to semicircular faults of the Minor Arc and the Main (Central) Ring marked by Devonian volcanic and sedimentary rocks, foidolites, and related metasomatic rocks (rischorrite, albitite, and aegirinite). Changes in the composition of pyroxenes are explained mainly by the redistribution of elements between coexisting minerals of foyaites in the process of their intense differentiation under the effect of foidolite melts that have intruded into the circular fault zones.  相似文献   

5.
Fluids from the ultramafic-hosted Lost City hydrothermal field were analyzed for total dissolved organic carbon and dissolved organic acids. Formate (36-158 μmol/kg) and acetate (1-35 μmol/kg) concentrations are higher than in other fluids from unsedimented hydrothermal vents, and are a higher ratio of the total dissolved organic carbon than has been found in most marine geothermal systems. Isotopic evidence is consistent with an abiotic formation mechanism for formate, perhaps during serpentinization processes in the sub-surface. Further support comes from previous studies where the abiological formation of low molecular weight organic acids has been shown to be thermodynamically favorable during hydrothermal alteration of olivine, and laboratory studies in which the reduction of carbon dioxide to formate has been confirmed. As the second most prevalent carbon species after methane, formate may be an important substrate to microbial communities in an environment where dissolved inorganic carbon is limited. Acetate is found in locations where sulfate reduction is believed to be important and is likely to be a microbial by-product, formed either directly by autotrophic metabolic activity or indirectly during the fermentative degradation of larger organic molecules. Given the common occurrence of exposed ultramafic rocks and active serpentinization within the worlds ocean basins, the abiotic formation of formate may be an important process supporting life in these high pH environments and may have critical implications to understanding the organic precursors from which life evolved.  相似文献   

6.
The paper presents a new physicochemical model of the formation of nanosized diamonds from an OHC fluid system under low temperature and pressure conditions corresponding to the graphite stability area. This model in general explains the specific features of the composition of gas mixtures for CVD and hydrothermal synthesis in terms of diamond growth and formation under metastable conditions. It also explains the origin of nanodiamonds and microdiamonds in metamorphic rocks of the Earth’s crust and the genesis of nanodiamonds in outer space at low temperatures and pressures.  相似文献   

7.
地幔流体作用——地幔捕虏体中流体包裹体的研究   总被引:8,自引:0,他引:8  
被碱性玄武岩和金伯利岩带到地表的地幔捕虏体是认识地球深部信息的窗口 ,是人们能够直接观察到的一种上地幔样品 ,其矿物中流体包裹体的存在提供了上地幔流体活动的直接证据。流体 /地幔矿物之间元素的分配对约束地幔交代过程中流体相的作用和上地幔流体的组成 ,揭示俯冲带壳幔物质的再循环过程 ,解释岛弧玄武岩高场强元素亏损的原因有重要意义。文章对近年来有关地幔捕虏体中流体包裹体的研究进行了评述 ,并结合近年来流体 /地幔矿物之间元素分配的高温高压实验研究讨论了流体在地幔中的重要作用。  相似文献   

8.
The geologic production of abiotic organic compounds has been the subject of increasing scientific attention due to their use in the global carbon flux balance, by chemosynthetic biological communities, and for energy resources. Extensive analysis of methane(CH4) and other organics in diverse geologic settings, combined with thermodynamic modelings and laboratory simulations, have yielded insights into the distribution of specific abiotic organic molecules on Earth and the favorable c...  相似文献   

9.
Seven spinel-group minerals in various geological settings have been revealed in the rocks of the Khibiny pluton. Hercynite, gahnite, and vuorelainenite occur only in xenoliths of hornfels after volcanic and sedimentary rocks, whereas spinel and magnesiochromite occur in alkaline ultramafic rocks of dike series. Franklinite has been discovered in a low-temperature hydrothermal vein. Ubiquitous magnetite is abundant in foyaite, foidolites, alkaline ultrabasic rocks, and pegmatite and hydrothermal veins and may even be the main mineral in some foidolite varieties. The spinel-group minerals are characterized by various chemical compositions due to the fractionation of nepheline syenites resulting in formation of the Main ring of foidolites and apatite-nepheline ore. Like most other minerals found throughout the pluton, magnetite is characterized by variation in the chemical composition along the radial line from the contact with country Proterozoic volcanic rocks to the geometric center of the pluton. Toward the center, the total Ti and Mn contents in magnetite increase from 5–15 up to 40 at %.  相似文献   

10.
Five minerals of the corundum group have been identified in the Khibiny pluton with certainty. Corundum proper and karelianite occur only in hornfels after volcanic and sedimentary rocks. Xenoliths of hornfels mark the ring faults that bound foidalite within the field of foyaite. Hematite occurs in hydrothermally altered nepheline syenite and crosscutting hydrothermal veins related to the ring faults. Minerals of the ilmenite-pyrophanite series are present in all rocks of the pluton, including veins. Accessory ilmenite in foyaite varies from the manganese variety and pyrophanite in the inner and outer parts of the pluton to manganese-free ilmenite in zone of the Main Ring Fault. In xenoliths of volcanic rocks and alkaline ultramafic rocks, ilmenite is enriched in magnesium. The zoning in distribution of the above-mentioned minerals and the character of variation in their compositions from margins of the pluton to its center are consistent with the petrochemical zoning formed as a result of foyaite alteration of near ring faults.  相似文献   

11.
A systematic structural and petrographic study of catazonal xenoliths found in Neogene volcanics of the Massif Central has shown that the infragranitic basement complex of this region is composed of (i) a metasedimentary sequence composed of khondalites, kinzigites, charnockitic paragneiss, cristalline limestones and skarn rocks, and (ii) a pyriclasitecharnockite suite. The rocks of both series have undergone polyphase deformation and several periods of metamorphism and anatexis. It is inferred from the presence of ultramafic and mafic xenoliths that the granulite-chamockite suite is underlain by a substratum composed of upper mantle peridotites, including feldspar-bearing lherzolites, interlayered with orthopyroxenolites, and wehrlitic and ariegitic rocks. Gabbroic rocks within the ultramafic units are thought to have been generated in situ by partial melting of the plagioclase lherzolite as a result of adiabatic decompression during the rapid rise of the mantle beneath the central part of the french Massif Central. Rise of the mantle coupled with superficial erosion caused the thinning of the overlying sialic crust and the exposure of the catazonal basement.

Remerciements. Je remercie Monsieur Le Professeur P. H. Forestier et Messieurs Lasnier B., Marchand J. de l'Université de Nantes, ainsi que W. R. Church (London University, Ontario, Canada) pour l'intérêt qu'ils ont porté à ce travail et pour leurs critiques constructives.  相似文献   

12.
The world's oldest diamond deposits occur in 2.67 Ga dikes and heterolithic breccias emplaced into greenstone belts of the Wawa and Abitibi Subprovinces, southern Superior Province, Canada. Thousands of white to yellow microdiamonds and macrodiamonds to 5 mm in width have been recovered by non-contaminating fusion techniques. The host rocks exhibit petrographic and compositional features that are characteristic of post-Archean minettes and spessartites of the calc-alkaline or shoshonitic lamprophyre clan. Based on chemical trends and petrographic evidence, host rocks that contain more than 16 wt.% MgO represent lamprophyre magmas that entrained cumulate olivine, probably at the base of the crust. Breccia bodies that are tens of metres wide at the two localities are somewhat atypical of late Archean lamprophyre occurrences in the Superior Province and owe their size to optimum conditions for magma ascent that were required to preserve the diamonds. Abundant altered ultramafic xenoliths occur in the host rocks. The majority of xenoliths studied (10 of 14) display uniform major element compositions similar to websterite cumulate suites derived from crystal fractionation processes at the base of post-Archean volcanic arcs. The xenoliths display highly variable trace element abundances that are characteristic of cryptic metasomatism associated with the flux of an oxidised fluid above a subduction zone.

The tectonic setting of the deposits and the nature of the host rocks indicate that the diamonds may be derived from the asthenospheric wedge and subducted slab at shallow depths (100 to 160 km) rather than the deep keels of Archean cratons associated with traditional diamond deposit types. Models of low-temperature Phanerozoic diamond formation in active subduction zones, or rapid uplift and emplacement of peridotite massif occurrences, can be adapted to the Archean deposits. The stability field of diamonds in most Phanerozoic subduction scenarios, however, may be too deep to be accessed by the lamprophyric magmas. In contrast, shallow subduction, as invoked for the distinctive occurrence of adakitic (slab-melt) type rocks in the southern Superior Province, could generate two different diamond stability windows at sufficiently shallow depths to account for their presence in lamprophyric magmas.

The multiple requirements imposed on Archean tectonic models by occurrences of diamonds in hydrous shoshonitic rock types (spessartite and minette lamprophyres), along with distinctively metasomatised xenoliths, strongly favour plate tectonic subduction models of orogeny. Evidence of slightly earlier mantle plumes, such as 2.7 Ga komatiites, only strengthens the need for a subduction-driven low-temperature thermal anomaly in the Archean mantle prior to lamprophyric magmatism.  相似文献   


13.
Volcanic activity has produced Late Tertiary and Quaternary cinder cones and flows between the Snake River Plain, U.S.A. and the Yukon Territory, Canada. The rock types include basanites, alkali olivine basalts, high-iron basalts, hawaiites, ankaramites, nephelinites, and olivine tholeiites. The alkali olivine basalts, basanites and hawaiites sampled are chemically similar to rocks from the mid-Atlantic islands. Associated with the volcanic rocks are xenoliths of ultramafic rocks, gabbros, granites and granulites.Seismic data indicate that the Moho throughout the region dips eastward at a very shallow angle. The low velocity zone has been located beneath southern British Columbia and displays a topographic high trending northwest-southeast. The nephelinite was erupted from near the crest of this high with less undersaturated lavas erupted from along its flanks.The suite of ultramafic xenoliths spans a greater variety of rock types than can be generated by maximum amounts of partial melting of a uniform source material to produce the lavas in the region. Calculated residual olivine compositions in equilibrium with the magmas at low velocity zone depths and liquidii temperatures are more iron-rich than the typical lherzolite xenolith olivine. This suggests that the residua from the partial melting episodes which produced the volcanic rocks are different from the upper mantle lid above the low velocity zone as represented by the ultramafic xenoliths.  相似文献   

14.
超基性岩本身难以生长锆石的特性,使得研究其中的锆石需要特别谨慎。超基性岩中的锆石虽然具有多解性,但是锆石也携带了很多演化信息。产出不同地质背景的超基性岩,其中的锆石特征不同。本文总结现有的研究实例表明:(1)经历高温高压变质作用的石榴橄榄岩通常通过交代作用获得锆石,且锆石能够记录峰期变质时代,其中的继承锆石较少,可能在高温高压条件下,继承锆石发生分解重结晶;(2)大洋蛇绿岩型超基性岩和地幔岩捕掳体中通常具有年龄分布很广的锆石年龄特征,锆石年龄峰值通常与区域上构造事件相吻合,为捕掳晶锆石。接下来本文以西南天山超高压(UHP)蛇纹岩为例,对其锆石年龄进行解释。西南天山蛇纹岩为经历过超高压变质作用的大洋蛇绿岩型超基性岩,2个蛇纹岩样品中锆石的阴极发光图像分析和SIMS U-Pb定年分析结果显示,西南天山UHP蛇纹岩中的锆石包含捕掳晶锆石和变质锆石,捕掳晶锆石的年龄为2.1~1.0Ga,对应该区变泥质岩中碎屑锆石记录的年龄峰值。409~537Ma可能代表了蛇纹岩原岩结晶时代。区域上的变质压力峰期年龄(~320Ma)在蛇纹岩中没有记录,仅有1颗锆石记录了309±5Ma的近峰期时代。270~155Ma的退变质时代在西南天山蛇纹岩中出现较广,这与榴辉岩中出现的退变年龄相吻合,代表了折返过程中较为普遍的后期热液事件。基于对超基性岩中锆石特征的初步了解,结合西南天山蛇纹岩的研究实例,认为通过研究锆石的年代学,结合锆石矿物化学、包体矿物学、同位素地球化学等特征,不仅可以提供年代学信息,还可以对超基性岩的来源和演化过程进行解析。  相似文献   

15.
New evidence shows that the picrite blocks in the margins of the Skaergaard intrusion, East Greenland are gabbro-contaminated xenoliths of ultramafic rock. Earlier studies suggested that the picrite blocks were cumulates formed in the Marginal Border Group or in the Hidden Zone. However, there are no known occurrences of undisturbed picrite or ultramafic rocks in the Skaergaard intrusion, and an extensive Hidden Zone is not supported by geophysical data. The picrite blocks are most abundant near a body of wehrlite in Precambrian rocks near Watkins Fjord. The wehrlite, which has a composition and mineralogy similar to the most mafic of the picrite blocks, lies structurally below the northern margin of the intrusion. It is possible that the refractory precursors of picrite in the Skaergaard intrusion may have been ultramafic xenoliths and are not representative of the earliest differentiated pan of the intrusion.  相似文献   

16.
程志国  张招崇  张东阳  黄河 《地质学报》2013,87(8):1104-1123
本文对新疆巴楚爆破角砾岩筒的矿物学进行了系统的研究.结果表明:爆破角砾岩主要由胶结物和超镁铁质包体构成,胶结物的主要造岩矿物有单斜辉石、橄榄石、角闪石和金云母,它们既有金伯利质岩浆本身结晶出来的矿物斑晶,也有与超镁铁质包体同源的捕掳晶.胶结物中晚期结晶的矿物比早期结晶的矿物更加富镁,矿物环带表现为反环带,指示岩浆在演化过程中发生了一定程度的岩浆混合作用.研究发现爆破角砾岩中超镁铁质包体与周围的层状岩体在矿物学上存在诸多不同,暗示包体可能不是来自于后者.对比发现,巴楚金伯利岩与中国东部华北地台含矿金伯利岩在克拉通固结年龄、岩石圈厚度、岩石出露位置及岩浆来源深度等方面均存在很大不同,这些对巴楚金伯利岩成矿构成了不利因素.  相似文献   

17.
The concentrations of the trace elements Na, K, Rb and Sr and the isotopic composition of Sr have been measured in a suite of ultramafic rocks, including alpine-type intrusions, inclusions in basalts and kimberlite pipes, zones from stratiform sheets, and a mica peridotite. From these data and those available in the literature the following conclusions can be drawn. Alpine-type ultramafic material appears to be residual in nature and can be neither the source material for the derivation of basalts nor the refractory residue of modern basalts. Alpine-type ultramafic intrusions appear to have no relationship with ultramafic zones in stratiform sheets and were probably derived from the upper mantle. A genetic relationship exists between basalts and their ultramafic inclusions, but it is extremely doubtful that this inclusion material could give rise to basalts by partial fusion. There is a possible genetic relationship between basalts and ultramafic inclusions in kimberlite pipes, and this ultramafic material is a potential source for the derivation of basalts. Ultramafic inclusions in basalts are probably not fragments of an alpine-type ultramafic zone in the mantle. An attempt has been made to synthesize the data and interpretations of this study by way of speculations on the role of ultramafic rocks in the differentiation history of the earth.  相似文献   

18.
From Donghai County of Jiangsu Province to Rongcheng County of Shandong Province on the southern border of the Sulu orogen, there exposes an ultramafic belt, accompanied with an ultrahigh-pressure metamorphic zone. It can be further divided into the Xugou belt (the northern belt), and the Maobei-Gangshang belt (the southern belt). One grain of diamond has been discovered from the Zhimafang pyrope peridotite in the southern belt using the heavy mineral method. The diamond grain is 2.13 mm × 1.42 mm × 0.83 mm in size and weighs 9.4 mg. The occurrence of the diamond suggests that the Zhimafang pyrope peridotite xenolith is derived from the lithospheric upper mantle. The tectonic emplacement mechanism of the pyrope peridotite xenoliths in granite-gneisses is obviously different from those in kimberlite. The Sulu orogen was located on the active continental margin of the Sino-Korean craton in the Neoproterozoic. The relatively cold and water-bearing oceanic crustal tholeiite slab subducted beneath the lith  相似文献   

19.
It has been suggested that the formation of reduced carbonaceous matter in basalts and mantle xenoliths occurs by heterogeneous reaction of volcanic gas on fresh, chemically active crack surfaces produced by thermal stresses during eruption and cooling. This hypothesis is supported by experiments at 400-800 degrees C on ?010? surfaces of San Carlos olivine exposed to C-O-H gases generated by the decomposition of oxalic acid and oxalic acid dihydrate. Carbonaceous films form readily on these surfaces and achieve thicknesses comparable to those observed in natural samples (a few nanometers) in a matter of minutes. At relatively oxidizing conditions, the carbonaceous films consist principally of C-C and C-H bonded species with lesser amounts of C-O bonded species. At relatively reducing conditions, the carbonaceous films consist of subequal amounts of C-C/C-H, C-O, and metal-C species. Aliphatic and aromatic hydrocarbons and other thermally labile organic species are associated with carbonaceous films in some natural samples but none were detected in experimental samples from this study, leaving open the question of abiotic synthesis of organic matter on crack surfaces in basalts. Regardless, it is clear from the preliminary experiments reported here that crack surfaces in olivine (and probably other silicate minerals and glasses) are capable of stabilizing compounds that otherwise would not be stable in cooling lava.  相似文献   

20.
Carbon abundances have been determined in mantle xenoliths from alkalic basalts and kimberlites and interpreted in terms of the nature and distribution of the C-rich phases. Anhydrous Cr-diopside Group I spinel lherzolites from basalts typically contain 15–50 ppm C, and amphibole-bearing ones have only marginally higher concentrations (40–100 ppm). Carbon abundances in Al-augite Group II pyroxenites are not significantly different from those of the Group I rocks. Although most LREE-depleted lherzolite xenoliths contain less C than enriched samples, there is no clear relationship between abundances of C and the incompatible trace elements.In the suite of deformed cumulate peridotite and dunite xenoliths of the 1801 Kaupulehu flow of the Hualalai volcano, Hawaii, C abundances are clearly related to texture, modal composition, and style of deformation. The most C-rich rocks are wehrlites in which the clinopyroxenes deformed more brittly and thus possess higher fluid inclusion and crack densities than the surrounding olivines.Regardless of their lithology, all xenoliths from kimberlites (including both peridotites and eclogites) are C-rich compared to those from basalts. Most of the C in these xenoliths exists as calcite or carbonaceous matter associated with serpentine veins and was thus probably contributed by the kimberlite host. Primary carbonates are extremely rare in all xenoliths, although occasionally they have been observed as daughter products in fluid inclusions.Although most C exists as inclusions of CO2-rich vapor, condensed carbonaceous matter also appears to occur in all rocks as discrete platy grains and as a film on natural surfaces such as grain boundaries and cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号