首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1–1 m s − 1 and maximum water depth, 10–60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolis-induced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise density-induced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries.  相似文献   

2.
Observations of the flow field over an elongated hollow (bathymetric depression) in the lower Chesapeake Bay showed tidally asymmetric distributions. Current speed increased over the landward side of the hole during flood tides and decreased in the deepest part of the hollow during ebb tides. A simple conceptual analysis indicated that the presence of a horizontal density gradient can generate the asymmetric spatial variations of flow structure depending on the sign of the horizontal density gradient. When water density decreases downstream, the velocity increases over the downstream edge of the hollow. Conversely when water density increases downstream, the flow decreases over the hollow more than a case without a horizontal density gradient. The conceptual analysis is confirmed by numerical experiments of simplified hollows in steady open channel flows and of an idealized tidal estuary. These hollows also alter the local current field of tidally averaged estuarine exchange flows. The residual depth-averaged currents over a hollow show a two-cell circulation when Coriolis forcing is neglected and an asymmetric two-cell circulation, with a stronger cyclonic eddy, when Coriolis forcing is included.  相似文献   

3.
A weakly nonlinear model is used to examine the mean transverse circulation (cross-isobath) driven by tidal-induced buoyancy flux. The mean Eulerian flows driven by both the barotropic and baroclinic tide are presented for a semi-infinite wedge. The mean flow driven by the barotropic tide is significant only near the apex where the thickness of the frictional boundary layer is comparable to the water depth. The mean flow there is characterized by a single-cell circulation with offshore flow near the bottom, and its magnitude can reach a few percentage or a significant fraction of the tidal velocity in oceanic applications. The mean flow driven by the baroclinic tide, on the other hand, is characterized by pairs of half-open (on the seaward side) counter-rotating cells, the number of which equals the vertical mode number. For a baroclinic tide propagating onshore, the mean flow near the top and bottom surfaces is always directed offshore and its magnitude can reach a large fraction of the tidal velocity. Taken together, the model thus predicts a mean offshore flow near the bottom while higher up in the water column the mean flow direction is less definite due to the contribution from different tidal components. The model results are consistent with some current measurements over the Georges Bank.  相似文献   

4.
A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.  相似文献   

5.
Using in situ, continuous, high frequency (8–16 Hz) measurements of velocity, suspended sediment concentration (SSC), and salinity, we investigate the factors affecting near-bed sediment flux during and after a meteorological event (cold front) on an intertidal flat in central San Francisco Bay. Hydrodynamic forcing occurs over many frequency bands including wind wave, ocean swell, seiching (500–1000 s), tidal, and infra-tidal frequencies, and varies greatly over the time scale of hours and days. Sediment fluxes occur primarily due to variations in flow and SSC at three different scales: residual (tidally averaged), tidal, and seiching. During the meteorological event, sediment fluxes are dominated by increases in tidally averaged SSC and flow. Runoff and wind-induced circulation contribute to an order of magnitude increase in tidally averaged offshore flow, while waves and seiching motions from wind forcing cause an order of magnitude increase in tidally averaged SSC. Sediment fluxes during calm periods are dominated by asymmetries in SSC over a tidal cycle. Freshwater forcing produces sharp salinity fronts which trap sediment and sweep by the sensors over short (∼30 min) time scales, and occur primarily during the flood. The resulting flood dominance in SSC is magnified or reversed by variations in wind forcing between the flood and ebb. Long-term records show that more than half of wind events (sustained speeds of greater than 5 m/s) occur for 3 h or less, suggesting that asymmetric wind forcing over a tidal cycle commonly occurs. Seiching associated with wind and its variation produces onshore sediment transport. Overall, the changing hydrodynamic and meteorological forcing influence sediment flux at both short (minutes) and long (days) time scales.  相似文献   

6.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

7.
The Basque coastal area, in the southeastern Bay of Biscay, can be characterised as being more influenced by land climate and inputs, than other typically ‘open sea’ areas. The influence of coastal processes, together with the presence of irregular and steep topography, complicate greatly the water circulation patterns. Water movement along the Basque coastal area is not well understood; observations are scarce and long-term current records are lacking. The knowledge available is confined to the surface currents: the surface water circulation is controlled mainly by wind forcing, with tidal and density currents being weak. However, there is a lack of knowledge available on currents within the lower levels of the water column; likewise, on the main time-scales involved in the water circulation. This study quantifies the contribution of the tidal and wind-induced currents, to the overall water circulation; it identifies the main time-scales involved within the tidal and wind-induced flows, investigating difference in such currents, throughout the water column, within Pasaia Bay (Basque coast). Within this context, extensive oceanographic and meteorological data have been obtained, in order to describe the circulation. The present investigation reveals that the circulation, within the surface and the sub-surface waters, is controlled mainly by wind forcing fluctuations, over a wide range of meteorological frequencies: third-diurnal, semidiurnal and diurnal land–sea breezes; synoptic variability; frequencies, near fortnightly periods; and seasonal. At the lower levels of the water column, the main contribution to the water circulation arises from residual currents, followed by wind-induced currents on synoptic time-scales. In contrast, tidal currents contribute minimally to the overall circulation throughout the water column.  相似文献   

8.
The Bras d’Or Lakes (BdOL) are a large, complex and virtually land-locked estuary in central Cape Breton Island of Nova Scotia and one of Canada’s charismatic ecosystems, sustaining ecological and cultural communities unique in many aspects. The BdOL comprise two major basins, many deep and shallow bays, several narrow channels and straits and a large, geologically complex watershed. Predictive knowledge of the water movement within the estuary is a key requirement for effective management and sustainable development of the BdOL ecosystem. A three-dimensional (3D) primitive-equation ocean circulation model is used to examine the estuary’s response to tides, winds and buoyancy forcing associated with freshwater runoff in a series of numerical experiments validated with empirical data. The model results generate intense, jet-like tidal flows of about 1 m s?1 in the channels between the basins and connecting them to the ocean and relatively weak tidal currents in other regions, which agrees well with previous observations and numerical results. Wind forcing and buoyancy forcing associated with river runoff play important roles in generating the significant sub-tidal circulations in the estuary, including narrow channels, deep basins and shallow bays. The circulation model is also used to reconstruct the 3D circulation and temperature-salinity distributions in the summer months of 1974, when current and hydrographic measurements were made at several locations. The sub-tidal circulation in the estuary produced by the model is characterised by wind and barometric set-up and set-down in different sections of the system, and a classic two-layer estuarine circulation in which brackish, near-surface waters flow seaward from the estuary into the Atlantic Ocean, and deep salty waters flow landward through the major channel. The model results reproduce reasonably well the overall features of observed circulation and temperature-salinity fields made in the BdOL in 1974 but generally underestimate the observed currents and density stratification. The model discrepancies reflect the use of spatially mean wind forcing and spatially and monthly mean surface heat flux and the inability of the coarse model horizontal resolution (~500 m) to resolve narrow channels and straits.  相似文献   

9.
The effects of large-scale interventions in the North Passage of the Yangtze Estuary (the Deep Waterway Project, DWP) on the along-channel flow structure, suspended sediment distribution and its transport along the main channel of this passage are investigated. The focus is explaining the changes in net sediment transport in terms of physical mechanisms. For this, data of flow and suspended sediment concentration (SSC), which were collected simultaneously at several locations and at different depths along the main channel of the North Passage prior to and after the engineering works, were harmonically analyzed to assess the relative importance of the transport components related to residual (time-mean) flow and various tidal pumping mechanisms. Expressions for main residual flow components were derived using theoretical principles. The SSC revealed that the estuarine turbidity maximum (ETM) was intensified due to the interventions, especially in wet seasons, and an upstream shift and extension of the ETM zone occurred. The amplitude of the M 2 tidal current considerably increased, and the residual flow structure was significantly altered by engineering works. Prior to the DWP, the residual flow structure was that of a gravitational circulation in both seasons, while after the DWP, there was seaward flow throughout the channel during the wet season. The analysis of net sediment transport reveals that during wet seasons and prior to the DWP, the sediment trapping was due to asymmetric tidal mixing, gravitational circulation, tidal rectification, and M 2 tidal pumping, while after the DWP, the trapping was primarily due to seaward transport caused by Stokes return flow and fresh water discharge and landward transport due to M 2 tidal pumping and asymmetric tidal mixing. During dry seasons, prior to the DWP, trapping of sediment at the bottom relied on landward transports due to Stokes transport, M 4 tidal pumping, asymmetric tidal mixing, and gravitational circulation, while after the DWP the sediment trapping was caused by M 2 tidal pumping, Stokes transport, asymmetric tidal mixing, tidal rectification, and gravitational circulation.  相似文献   

10.
The Dee Estuary, at the NW English–Welsh border, is a major asset, supporting: one of the largest wildlife habitats in Europe, industrial importance along the Welsh coastline and residential and recreational usage along the English coast. Understanding of the residual elevation is important to determine the total water levels that inundate intertidal banks, especially during storms. Whereas, improved knowledge of the 3D residual circulation is important in determining particle transport pathways to manage water quality and morphological change. Using mooring data obtained in February–March 2008, a 3D modelling system has been previously validated against in situ salinity, velocity, elevation and wave observations, to investigate the barotropic–baroclinic wave interaction within this estuary under full realistic forcing. The system consists of a coupled circulation-wave-turbulence model (POLCOMS-WAM-GOTM). Using this modelling system the contribution of different processes and their interactions to the monthly residuals in both elevation and circulation is now assessed. By studying a tidally dominated estuary under wave influence, it is found that baroclinicity induced by a weak river flow has greater importance in generating a residual circulation than the waves, even at the estuary mouth. Although the monthly residual circulation is dominated by tidal and baroclinic processes, the residual estuarine surface elevation is primarily influenced by the seasonal external forcing to the region, with secondary influence from the local wind conditions. During storm conditions, 3D radiation stress becomes important for both elevation and circulation at the event scale but is found here to have little impact over monthly time scales.  相似文献   

11.
《Continental Shelf Research》2007,27(10-11):1528-1547
Barrier island estuarine systems are common along the East and Gulf coasts of Florida. While some information regarding these systems is available in report form, detailed observational studies of their hydrodynamic properties are scarce in existing literature. Hydrography and current velocity were observed at a tidally driven coastline trifurcation, adjacent to the St. Augustine Inlet, Florida, in the Guana–Tolomato–Matanzas Estuary. Data were collected over nearly a semidiurnal period on February 2, 2006. The domain is well mixed and convergence fronts appear aligned with bathymetry. Eighty-six percent of the tidal variability in the study area is explained by the semidiurnal harmonic, which propagates through the system as a quasi-standing wave. The mean flow structure at the inlet (inflow in channel and outflow over shoals) governs intra-estuarine communication and is consistent with theoretical residual flows produced by a standing tidal wave. The governing force balance is between advective acceleration and the barotropic pressure gradient. The mean flow structure across the inlet might be explained by both Li and O’Donnell's [2005. The effect of channel length on the residual circulation in tidally dominated channels. Journal of Physical Oceanography 35, 1826–1840] analytical model, and Stommel and Farmer's [1952. On the nature of estuarine circulation. Woods Hole Oceanographic Institute, Woods Hole, Massachusetts, Ref. 52–51, 52–63, 52–88] source–sink analog. Flow characteristics for St. Augustine Inlet are compared with Beaufort Inlet, North Carolina; North Inlet, South Carolina; and Sand Shoal Inlet, Virginia. While these systems share similar characteristics, a common subtidal flow structure is not evident.  相似文献   

12.
An observational study in the middle reach of Delaware Bay shows that vertical stratification is often enhanced during flood tide relative to ebb tide, contrary to the tidal variability predicted by the tidal straining mechanism. This tidal period variability was more pronounced during times of high river discharge when the tidally mean stratification was higher. This tidal variability in stratification is caused by two reinforcing processes. In the along-channel direction, the upstream advection of a salinity front at mid-depth causes an increase of the vertical stratification during the flood tide and a decrease during the ebb tide. In the cross-channel direction, the tilting of isohalines during the ebb reduces vertical stratification, and the subsequent readjustment of the salinity field during the flood enhances the water column stability. A diagnosis of the cross-channel momentum balance reveals that the lateral flows are driven by the interplay of Coriolis forcing and the cross-channel pressure gradient. During the flood tide, these two forces mostly reinforce each other, while the opposite occurs during the ebb tide. This sets up a lateral circulation that is clockwise (looking landward) during the first half of the flood and then reverses and remains counterclockwise during most of the ebb tide. Past maximum ebb, the cross-channel baroclinic term, overcomes Coriolis and reverses the lateral flows.  相似文献   

13.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

16.
The residual circulation over the continental slope, and in particular, its vertical structure, is analysed by means of an idealised hydrodynamic model. The model is based on the depth-dependent shallow-water equations under uniform along-isobath conditions and is forced by a prescribed meridional density gradient and tidal velocities. By means of expansion in the small Rossby number solutions are analysed for conditions representative for the continental slopes off the Hebrides and in the Bay of Biscay. The steady solution at zeroth order consists of a linear density-driven flow. At order a tidally rectified flow is found and a stationary flow due to self-interaction of the zeroth-order density-driven flow. At order 2 the leading-order effect of the interaction between the zeroth-order density-driven flow and the tides is found: the ‘interaction current’. The solutions up to and including order 2 constitute an along-isobath steady slope current which is comparable to field data. The slope current and the accompanying cross-shelf circulation depend strongly on the shelf and flow characteristics. For the Hebridean case the density forcing predominates, but for the Biscay case the tidal effects are of the same order of magnitude as the density effects. Under those conditions the interaction current is significant which implies that linear superposition of density and tidal effects differs from the non-linear combination of both. It is also shown that the depth-average of the interaction current differs essentially from the solution obtained from a depth-averaged model.  相似文献   

17.
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season.  相似文献   

18.
Bastos  A.  Collins  M.  Kenyon  N. 《Ocean Dynamics》2003,53(3):309-321
Numerical simulations of tidal flow and sand transport around a coastal headland (Portland Bill, southern UK) were undertaken to investigate patterns of sand transport during the development of tidally induced transient eddies. Results obtained from a 2-D finite-element hydrodynamic model (TELEMAC-2D) were combined with a sediment transport model (SEDTRANS), to simulate the sand transport processes around the headland. Simulation of the tidal flow around Portland Bill has shown the formation and evolution of tidally induced transient eddies, around the headland. During the evolution of these transient eddies, no current-induced bedload (transport) eddy is formed for either side of the headland. Net bedload sand transport direction, around a coastal headland, is the result of instantaneous gradients in bedload transport rates, during flood and ebb flows, rather than the average (residual) flow. Thus, the use of residual (water) circulation to describe patterns of sediment movement as bedload is not an appropriatedapproach. In the case study presented here, the distinct characteristics of the coastal and seabed morphology around the Isle of Portland (i.e. headland shape and the bathymetry) indicate that these parameters can be influencing tidal (flow) and sediment dispersion around the headland. Such an interpretation has broader implications and applications to headland-associated sandbanks elsewhere.Responsible Editor: Hans Burchard  相似文献   

19.
A three-dimensional numerical model with a prognostic salinity field is used to investigate the effect of a partial slip bottom boundary condition on lateral flow and sediment distribution in a transect of a tidally dominated channel. The transect has a symmetrical Gaussian cross-channel bottom profile. For a deep, well-mixed, tidally dominated channel, partial slip decreases the relative importance of Coriolis deflection on the generation of cross-channel flow patterns. This has profound implications for the lateral distribution of residual salinity that drives the cross-channel residual circulation pattern. Transverse sediment transport, however, is always found to be governed by a balance between advection of residual sediment concentration by residual lateral flow on the one hand and cross-channel diffusion on the other hand. Hence, the changes in the cross-channel distribution of residual salinity modify the lateral sediment distribution. For no slip, a single turbidity maximum occurs. In contrast, partial slip gives a gradual transition to a symmetrical density distribution with a turbidity maximum near each bank. For a more shallow, partially mixed tidal channel that represents the James River, a single turbidity maximum at the left bank is found irrespective of the near-bed slip condition. In this case, semi-diurnal contributions to sediment distribution and lateral flow play an important role in cross-channel sediment transport. As vertical viscosity and diffusivity are increased, a second maximum at the right bank again exists for partial slip.  相似文献   

20.
Tidal residual eddies and their effect on water exchange in Puget Sound   总被引:1,自引:0,他引:1  
Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its subbasins was evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other subbasins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号