首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the present study, an attempt was made to understand the role of South China Sea (SCS) convection associated with northerly cold surges and Typhoon Peipah in initiating Cyclone Sidr in the Bay of Bengal (BoB). The variation of air sea fluxes during the entire history of Cyclone Sidr tracking before its landfall over Bangladesh was also studied. The presence of cold surges in the north SCS associated with heavy rainfall episodes has been noticed at the southern Gulf of Tonkin coast prior to the formation of Typhoon Peipah. Subsequently, these surges migrated south, which resulted in intensification of a deep convection on reaching the Vietnamese coast. During the same period in the western Pacific, Typhoon Peipah developed, propagating in the westward direction and entering the SCS. Analysis of geostationary water vapour images, mean sea level pressure, and surface wind maps clearly depicted the transport of convective cloud clusters, moisture, and westward momentum from Typhoon Peipah to the deep convection cells over the SCS. Consequently, the existing deep convection over the Vietnamese coast resulted in a westward direction and entered the Gulf of Thailand and Andaman Sea. The availability of higher latent heat fluxes, warmer sea surface temperatures, and suitable atmospheric conditions over this region favoured the formation of a tropical depression in the Andaman Sea. This depression further intensified in the southeast BoB, resulting in the formation of Cyclone Sidr. NCEP/NCAR wind fields and air-sea fluxes revealed left asymmetry surface winds and higher latent heat flux on the left side of the track during the intensification phase of Sidr.  相似文献   

2.
Previous investigations have suggested that wind stress curl, the balance of influx- and outflux-induced upwelling, as well as a positive vorticity source fed from the left flank of the Kuroshio are all possible mechanisms that contribute to a persistent cyclonic gyre in the South China Sea (SCS). Studies have also suggested that the loop current that forms from the Kuroshio intrusion in the Luzon Strait, similar to the Loop Current in the Gulf of Mexico (GOM), has rarely been observed in the northern SCS. In this research, an idealized numerical model driven by annual mean wind stress was adopted to investigate the relative importance of dynamic processes that control the mean flow pattern of Kuroshio in the Luzon Strait and regulate circulation in the SCS. An analysis of results drawn from numerical experiments suggests that the three mechanisms are of approximately equal importance in the formation of the persistent cyclonic gyre in the northern SCS. Unlike the Gulf Stream which enters the Gulf of Mexico through the Yucatan Channel, the two topographic ridges that align nearly meridionally in the Luzon Strait keep the Kuroshio flowing roughly northward without distinct intrusion into the SCS. Unsurprisingly, an anticyclonic loop current similar to the Gulf Stream pathway in the GOM was barely observed in the northern SCS.  相似文献   

3.

The adjustment of sea surface height (SSH) around the coasts of the Japan/East Sea (JES) and the South China Sea (SCS) basins subjected to extratropical Pacific Oceanic low frequency variability is studied using a Kelvin-planetary wave model and a high resolution numerical model. It is found that the modulation of SSH around the coast of Japan is mainly determined by slow adjustment of planetary waves, which radiate from the west coast of Honshu and Hokkaido due to the coastal Kelvin wave. In contrast, the SSH modulation around the cost of the South China Sea basin is mainly determined by the coastal Kelvin wave, which transfers the anomalous SSH into the SCS via the Luzon Strait and out via the Mindoro Strait. The planetary waves radiating from the west coast of Palawan establish a nearly uniform SSH anomaly in the southern part of the SCS, bounded by an eastward jet at the latitude of the Mindoro Strait. Along the western boundary, SSH anomaly decreases almost linearly toward the south, in accordance with the changing local deformation radius. In these two marginal seas, the mean subtropical Pacific gyre circulation enhances SSH modulation induced by extratropical Pacific low frequency variability. Overall, the SSH adjustment in the JES and the SCS predicted by the analytical model agrees well with the numerical model simulation. Application of this model to interaction between these marginal seas and the open ocean is discussed.  相似文献   

4.
Modeling the circulation in the Gulf of Tonkin, South China Sea   总被引:4,自引:0,他引:4  
The circulation in the Gulf of Tonkin (Beibu Gulf) was studied using the Princeton Ocean Model, which was forced with the daily surface and lateral boundary fluxes for 2006 and 2007, as well as tidal harmonics and monthly climatological river discharges. In the southern Gulf, the vertically averaged circulation was anti-cyclonic in summer and changed to cyclonic in winter. Although it was highly correlated with the local wind, the southern gyre was driven primarily by the South China Sea (SCS) general circulation from the south. Flows in the Qiongzhou Strait that played a significant role in determining the circulation variability in the northeastern Gulf could be eastward or westward at any given day in summer or winter, but the seasonal mean current was eastward from late spring through summer and westward during the rest of the year, with an annual mean westward transport of ~0.1 Sv into the Gulf. Different water masses were distinguished at the surface with the warm and saline SCS water in the south, relatively fresh plume waters along the northern and western coasts of the Gulf, and the mixture of the two in between. At lower levels, two cold water masses were identified in the model, and each had T/S distributions qualitatively similar to the observations obtained in 2007. These two water masses were produced throughout the winter, sheltered from the surface warming by a thermocline as the season progressed, and eventually disappeared in late fall.  相似文献   

5.
Wang  Dongxiao  Wang  Qiang  Cai  Shuqun  Shang  Xiaodong  Peng  Shiqiu  Shu  Yeqiang  Xiao  Jingen  Xie  Xiaohui  Zhang  Zhiwei  Liu  Zhiqiang  Lan  Jian  Chen  Dake  Xue  Huijie  Wang  Guihua  Gan  Jianping  Xie  Xinong  Zhang  Rui  Chen  Hui  Yang  Qingxuan 《中国科学:地球科学(英文版)》2019,62(12):1992-2004
The South China Sea(SCS) is a large marginal sea connecting the Indian and Pacific oceans.Under the factors of monsoons,strait transport,and varied bathymetry,the SCS presents a three-layer structure and strong diapycnal mixing which is far greater than that in the open ocean.Theoretical analysis and observations reveal that internal tides,internal solitary waves,and strong winds are the sources of the strong mixing in the northern SCS.A major consequence of the strong mixing is an active mid-deep circulation system.This system promotes exchange of water between the SCS and adjacent oceans,and also regulates the upper layer of wind-driven circulation,making the 3 dimensional SCS circulation clearly different from that in other tropical and subtropical marginal seas.The mass transport capacity of the mid-deep circulation has a substantial impact on marine sedimentation,the biogeochemical cycle,and other processes in the SCS.This paper summarizes the recent advances in middeep sea circulation dynamics of the SCS,and discusses the opportunities and challenges in this area.  相似文献   

6.
The wind-driven circulation in the northwestern Pacific and the South China Sea (SCS) is simplified as a two-layer, quasi-geostrophic model in two rectangular basins connected by an idealized strait. This model is used to investigate the impact of the western boundary current (WBC) on the adjacent marginal sea. The variability of the circulation in the two basins is investigated with a high resolution and at low viscosity, which allows the numerical solution to resolve mesoscale eddy forcing. The model ocean is driven by the time-independent asymmetric wind stress acting on the idealized Pacific (large basin) only. Under the reference parameters used in this study, the WBC can intrude into the idealized SCS (small basin) in the form of a loop current, shedding eddies regularly. The rate of eddy shedding is nearly constant throughout the entire integration time of the model; however, the intensity of the eddy-shedding exhibits multiple timescale variability ranging from quasi-biennial to decadal timescale. A set of sensitivity experiments demonstrate that our results are robust against changes to model parameters and geometry. Multivariate spectral analysis is used to extract the spatiotemporal feature of the variability. Joint analysis for the two basins shows that the circulation in the idealized SCS is significantly impacted by the variability at decadal (15-year), interannual (5–7-year and quasi-biennial), and quasi-annual timescales. The spatial structures of the modes of variablility suggest that the variance in position of the WBC, combined with mesoscale activity, act to influence the low-frequency modes of the idealized SCS. The structural differences between the modes strongly impacting the idealized SCS and those having weak influence are also presented.  相似文献   

7.
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak…  相似文献   

8.
南海东部的板块汇聚带是了解南海和菲律宾海晚中新世以来构造演化的一个重要窗口.针对这一区域地壳运动的研究,获得了该区内微块体的现时地壳运动特征及其动力机制,在此基础上结合俯冲板片形态和震源机制资料提出了该区晚中新世以来的板块汇聚作用特征.研究发现:晚中新世晚期,菲律宾海板块西缘在南、北部的西向运动均受到限制的情况下,位于中间区域的吕宋岛北部则由于其西侧相对自由而继续往NW方向运动.该过程中,菲律宾大断裂等汇聚带内部的走滑断裂对于协调不同块体之间的地壳运动速度差异有着重要作用.受南、北阻挡的影响,中间部分的西向运动速率呈现出中间大(吕宋岛北部)两端小的特征.因而北吕宋西侧的马尼拉海沟也以相对于南部更快的速率不断向NW迁移.然而俯冲的南海岩石圈受其下方SE向地幔流的影响,未能发生相应的俯冲板片后撤,而是在两板块之间的直接接触面形成强烈推挤并发生反向弯曲.结合这一板块作用特征认为,马尼拉海沟现今的构造形迹是在上述背景下北段多次向NW方向变迁形成的,而双火山弧的形成则主要是由菲律宾海板块在吕宋岛弧南、北部的西向运动速率差异引起的.  相似文献   

9.
Due to limited in situ data and diagnostic numerical models, the summer circulation structure and formation mechanism in the Beibu Gulf have always been in controversy in the past 50 years. Therefore, a new three-dimensional hindcast model was built within the northwestern South China Sea(SCS), forced with the daily averaged wind, heat flux, lateral flux, as well as tidal harmonic and eight major rivers discharges. And the east boundary was set up far away off the Qiongzhou Strait(QS). Lastly, the model results were consistent with not only the synchronous observation data from the project 908 but also the historical observed data. As a result, the summer circulation structure was revealed that the southern Gulf was occupied by an anticyclonic eddy whereas the northern Gulf was dominated by a cyclonic gyre. Although the circulation major structure was stable, its area and strength had yearly and monthly oscillation. The other three sensitive experiments indicated that the circulations in the southern and northern Gulf were driven by the SCS circulation and monsoon wind, respectively. After the theoretical analysis of the potential vorticity budget, it was further revealed the circulation in the northern Gulf was driven by the positive wind stress curl in summer. Besides, the river discharge was also significant as the vertical circulation had two layer structures outside the mouth of the Red River. Generally, this work calls for the further research on other subjects, such as ocean biogeochemical or marine fisheries.  相似文献   

10.
Sea level changes coherently along the two coasts of Japan on the seasonal timescale. Archiving, validation, and interpretation of satellite oceanographic altimetry data and ocean general circulation model for the Earth Simulator results indicate that the variation propagates clockwise from Japan’s east coast through the Tsushima Strait into the Japan/East Sea (JES) and then northward along the west coast. In this study, we hypothesize and test numerically that the sea-level variability along the west coast of Japan is remotely forced by the Kuroshio Extension (KE) off the east coast. Topographic Rossby waves and boundary Kelvin waves facilitate the connection. Our 3D Princeton Ocean Model when forced by observed wind stress reproduces well the seasonal changes in the vicinity of JES. Two additional experiments were conducted to examine the relative roles of remote forcing and local forcing. The sea-level variability inside the JES was dramatically reduced when the Tsushima Strait is blocked in one experiment. The removal of the local forcing, in another experiment, has little effect on the JES variability. Both experiments support our hypothesis that the open-ocean forcing, possibly through the KE variability, is the leading forcing mechanism for sea-level change along the west coast of Japan.  相似文献   

11.
A serics of low-latitude marginal seas, ranging from the southern South China Sea in the north to the Arafura Sea in the south, are located within the Western Pacific Warm Pool. As shown by rnicropaleontological, isotopical and organic geochemical analyses, the sea surface temperatures in the marginal seas at the last glacial maximum were much cooler than those in the open Western Pacific Ocean. The emergence of extensive shelves of the marginal seas at the glacial low sea-level stand and the decrease of surface temperatures in their deeper water parts resulted in a remarkable reduction of the ability of vapor and heat transport to the atmosphere, causing variabilities to the Warm Pool in the glacial cycles. The intensification of winter monsoon at the glacial stages not only led to a decrease of the surface water temperature and hence to an enhanced seasonality, but also carried moisture from the sea to the tropical islands, giving rise to the downward shift of snowline and mountainous vegetation zones there. It may offer a new alternative in solution of the “Tropical Ocean Paleo-temperature Enigma”. Project supported by the National Natural Science Foundation of China (Grant No. 49576286).  相似文献   

12.
The western boundary current in the southern South China Sea (SCS) in summer does not always flow northward along the Indo-China Peninsula, it leaves the southeast coast of peninsula around 10–14°N, forming a strong eastward jet called “Vietnam Coastal Current” or “Southeast Vietnam Offshore Current” (SVOC). It is known that the wind stress curl is the major driving factor responsible for this current. In this paper, we carry on the study of the separation position, strength and forming time of this current. A connected single-layer/two-layer model is employed here to study these problems. According to the numerical experiments and analyses of the vorticity dynamics, it is found that, the local wind stress curl (including the northern cyclonic and the southern anticyclonic wind forcing curl), the nonlinear term, the topographic effect, the planetary vorticity advection and the water exchange between the SCS and Java Sea via the Sunda Shelf have an important effect on both the position where this current leaves the coast and its strength; when there is an inflow via the Sunda Shelf, the current is stronger and the separation position is more northward; whereas the water stratification, the coastline and the inflow of Kuroshio have little effect on its separation. In fact, two opposite flowing currents, the northward SVOC and the southward western branch of the cyclonic eddy to its north near the Indo-China Peninsula, collide with each other, and the strength of these two currents determine the separation position of the SVOC. Origin of the SVOC may be driven by the local negative wind stress curl in the middle SCS in mid-spring, this current flows along the coast of the Indo-China Peninsula and leaves the coast at high latitude, flowing northeastward; once the local positive wind stress curl near the northern Indo-China Peninsula or the negative one near the southern Indo-China Peninsula is large enough, this current will begin to leave the coast at low latitude.  相似文献   

13.
Increasing eutrophication in the coastal seas of China from 1970 to 2050   总被引:4,自引:0,他引:4  
We analyzed the potential for eutrophication in major seas around China: the Bohai Gulf, Yellow Sea and South China Sea. We model the riverine inputs of nitrogen (N), phosphorus (P) and silica (Si) to coastal seas from 1970 to 2050. Between 1970 and 2000 dissolved N and P inputs to the three seas increased by a factor of 2–5. In contrast, inputs of particulate N and P and dissolved Si, decreased due to damming of rivers. Between 2000 and 2050, the total N and P inputs increase further by 30–200%. Sewage is the dominant source of dissolved N and P in the Bohai Gulf, while agriculture is the primary source in the other seas. In the future, the ratios of Si to N and P decrease, which increases the risk of harmful algal blooms. Sewage treatment may reduce this risk in the Bohai Gulf, and agricultural management in the other seas.  相似文献   

14.
Winter observations of shelf and slope hydrography and currents in the inner Gulf of Tehuantepec are analysed from two field studies in 1989 and 1996 to specify the variability of near-shore conditions under varying wind stress. During the winter period frequent outbursts of ‘Norte’ winds over the central Gulf result in persistent alongshore inflows along both its eastern and western coasts. Wind-induced variability on time scales of several days strongly influences the shelf currents, but has greater effect on its western coast because of the generation and separation of anticyclonic eddies there. The steadier inflow (∼0.2 m s−1) on the eastern shelf is evident in a strong down-bowing of shallow isosurfaces towards the coast within 100 km of shore, below a wedge of warmer, fresher and lighter water. This persistent entry of less saline (33.4–34.0), warmer water from the southeast clearly originates in buoyancy input by rivers along the Central American coast, but is augmented by a general shoreward tendency (0.2 m s−1) in the southeastern Gulf. The resultant shallow tongue of anomalous water is generally swept offshore in the head of the Gulf and mixed away by the strong outflow and vertical overturning of the frequent ‘Norte’ events but during wind relaxations the warm, low-salinity coastal flow may briefly extend further west. In the head of the Gulf, flow is predominantly offshore (<0.2 m s−1) as the alongshore component alternates eastward and westward in association with elevation or depression, respectively, of the pycnocline against the shore. More saline, open ocean water is introduced from the north-western side of the Gulf by the inflow along the west coast. During extended wind relaxations, the flow becomes predominantly eastward beyond the shelf while nearshore the coastally trapped buoyant inflow from the southeast penetrates across the entire head of the gulf at least as far as its western limit. On the basis of these and other recent observations, it seems that the accepted view of a broad, persistent Costa Rica Coastal Current (CRCC) is the result of averaging over many relatively sparse observations and that the instantaneous CRCC is a highly variable and convoluted flow around and between constantly changing eddies. The buoyancy-driven shelf current reported here forms a hitherto unrecognized, but major, component of this CRCC system.  相似文献   

15.
In Lakshadweep Sea, the distribution of observed sea surface temperature (SST) during summer monsoon season (June–September) shows the presence of a distinct cold pool (SST?<?27°C). Available satellite measurements and assimilated datasets are utilized to investigate the characteristics and mechanisms that govern the genesis and evolution of this cold pool. It is located in the grid 8° N–10° N/74° E–76° E, with a diameter of about 200?km, centered approximately at 9° N/75° E off the southwest coast of India. This cold pool, which we call as the Lakshadweep cold pool (LCP), forms invariably during the fifth pentad of June as a small cooling within the cold surface waters advected northward along the southwest coast of India from the Arabian Sea Mini Cold Pool. With the progress of the season, LCP intensifies, spread radially outwards and shows a westward spread during late July. Maximum intensity and radial spread are attained during July. By the end of August, LCP extends northward along the coast up to 13° N, and by September, it gets completely dissipated. Within the LCP, the thermocline exhibits pronounced shoaling compared to the adjacent regions. The intensity, duration, and spread of LCP showed annual variations in each summer monsoon during 1998–2005 and owes its origin to upwelling produced by uplift of poleward undercurrent induced by an elevated bathymetry in the presence of a seamount. The mechanism for the intensification is thought to be due to the combined action of Ekman pumping due to positive wind stress curl, eddy-induced upwelling due to the Lakshadweep low, and the intensification of the poleward undercurrent during the season. West- and northward spreads of LCP are attributed to the westward movement of Lakshadweep Low and the northerly spreading and intensification of positive wind stress curl, respectively. The mechanisms that govern this phenomenon are thoroughly examined.  相似文献   

16.
This paper examines the subtidal circulation and associated variability in the Gulf of St. Lawrence, the Scotian Shelf, and the Gulf of Maine (GSL-SS-GOM) in 1988–2004 based on results produced by a nested-grid shelf circulation model. The model has a fine-resolution child model (~ (1/12)°) embedded inside a coarse-resolution parent model (~ (1/4)°) of the northwest Atlantic. The combination of the semi-prognostic method and the spectral nudging method is used to reduce the model seasonal bias and drift. The child model reproduces the general features of the observed circulation and hydrography over the study region during the study period. The child model results demonstrate that the time-mean circulation in the GSL is affected by the time-mean atmospheric forcing and inflow through the Strait of Belle Isle. The temporal variability in atmospheric forcing affects the outflow through western Cabot Strait, which in turn affects the transport of the Nova Scotian Current and the gulf-wide cyclonic circulation in the GOM. The simulated seasonal variability of salinity in the top 30 m of the GSL-SS-GOM is mainly affected by the equatorward advection of low-salinity waters from the lower St. Lawrence Estuary to the GOM through the Scotian Shelf. The simulated intraseasonal variability of circulation in the GSL is affected by the variability in the estuarine circulation in response to the temporal variability in atmospheric forcing. On the Scotian Shelf, the intraseasonal variability is mainly driven by the variability of wind forcing and mesoscale and nonlinear dynamics over the shelf break and slope region. The interannual variability in the simulated temperature and salinity are spatially coherent in the intermediate waters in the GSL, which is caused partially by the local response to atmospheric variability and partially by variabilities over the southern Newfoundland Shelf that enter the GSL through the eastern Cabot Strait. By comparison, on the Scotian Shelf, the interannual variability of simulated circulation is affected by anomalies produced by the nonlinear dynamics which are advected equatorwards by the shelf break jet.  相似文献   

17.
Variability of dense water formation in the Ross Sea   总被引:1,自引:0,他引:1  
This paper presents results from a model study of the interannual variability of high salinity shelf water (HSSW) properties in the Ross Sea. Salinity and potential temperature of HSSW formed in the western Ross Sea show oscillatory behaviour at periods of 5–6 and 9 years superimposed on long-term fluctuations. While the shorter oscillations are induced by wind variability, variability on the scale of decades appears to be related to air temperature fluctuations. At least part of the strong decrease of HSSW salinities deduced from observations for the period 1963–2000 is shown to be an aliasing artefact due to an undersampling of the periodic signal. While sea ice formation is responsible for the yearly salinity increase that triggers the formation of HSSW, interannual variability of net freezing rates hardly affects changes in the properties of the resulting water mass. Instead, results from model experiments indicate that the interannual variability of dense water characteristics is predominantly controlled by variations in the shelf inflow through a sub-surface salinity and a deep temperature signal. The origin of the variability of inflow characteristics to the Ross Sea continental shelf can be traced into the Amundsen and Bellingshausen Seas. The temperature anomalies are induced at the continental shelf break in the western Bellingshausen Sea by fluctuations of the meridional transport of circumpolar deep water with the eastern cell of the Ross Gyre. In the Amundsen Sea, upwelling due to a persistently cyclonic wind field carries the signal into the surface mixed layer, leading to fluctuations of the vertical heat flux, anomalies of brine release near the sea ice edge, and consequently to a sub-surface salinity anomaly. With the westward flowing coastal current, both the sub-surface salinity and deep temperature signals are advected onto the Ross Sea continental shelf. Convection carries the signal of salinity variability into the deep ocean, where it interacts with modified circumpolar deep water upwelled onto the continental shelf as the second source water mass of HSSW. Sea ice formation on the Ross Sea continental shelf thus drives the vertical propagation of the signal rather than determining the signal itself.  相似文献   

18.
Using Lagrangian methods, we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time scales. Strong seasonality in surface outflow through the strait could be explained by temporal changes in the wind stress over the northern and western Bering Sea slopes. Interannual changes in a surface outflow through the Kamchatka Strait correlate significantly with the Near Strait inflow and Bering Strait outflow. Enhanced westward surface flow of the Alaskan Stream across the 174°E section in the northern North Pacific is accompanied by an increased inflow into the Bering Sea through the Near Strait. In summer, the surface flow pattern in the Kamchatka Strait is determined by the passage of anticyclonic and cyclonic mesoscale eddies. The wind stress over the Bering basin in winter–spring is responsible for eddy generation in the region.  相似文献   

19.
中国近海海平面变化特征分析   总被引:6,自引:1,他引:5       下载免费PDF全文
用经验正交函数分析方法,对中国近海14年多的测高海平面同化格网资料进行分析,给出了黄海、东海和南海各海平面变化主要主成分的空间变化和时间变化特征.用标准Morlet小波变换方法分析了各海区主成分时间变化序列的时频特征.分析结果表明,各主成分的空间分布特征与当地的海洋环流或洋流特征相对应.时频分析结果显示,中国近海海平面变化的显著周期主要为年周期信号.其次,黄海和东海还显示准2个月的非稳态信号,东海和南海具有较显著的半年周期信号,东海半年周期信号的能量不稳定.此外,在南海及台湾东部海域,首次发现存在较为显著的准540天周期信号,其动力学机制目前尚不明确.坎门和西沙验潮站资料的时频特征分析也验证了该信号的存在.最后本文给出了中国近海海平面在1993~2007年间的平均上升速率和其区域分布特征.  相似文献   

20.
鄂霍茨克海的地球物理场与地质构造   总被引:1,自引:0,他引:1  
鄂霍茨克海位于西太平泮边缘海最北部,受欧亚大陆板块和太平洋板块的作用,有十分复杂的地质地球物理特征,鄂霍茨克海不仅有海隆,还有三个著名的盆地,其中的千岛盆地,是研究鄂霍茨克海的一个窗口,本文通过对大量相关资料的二次开发,详细地讨论了鄂霍茨克海的地球物理场特征,沉积特点、热流分及深部结构特点,并对该边缘海的形成演化进行了初步的探讨,我们认为,对鄂霍茨克海研究的结果,将对中国边缘海地质特征的研究起到帮助和借鉴作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号