首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
全天相机拍摄的全天空地基云图能够实时反映当地的云量信息,而云量是天文选址首先考虑的因素之一。因此,对全天空地基云图根据图像质量、应用背景等因素进行自动化分类,实现鲁棒性高、适应性强的自动化分类算法,为天文选址提供重要帮助。基于雪龙号全天相机数据对卷积神经网络模型进行训练,并使用丽江观测站全天相机数据进行测试,取得了较好的应用效果,实现了可迁移性高的全天空地基云图自动化分类方法。  相似文献   

2.
南极高原拥有独特的天文观测优势,为了对南极中山站夜天文观测条件进行实测研究,中国科学院云南天文台专门研制了一套具有耐低温、自动除雪除霜等适应南极气候特征的全自动全天信息采集系统,该系统可以提供实时的全天云量、天光背景和全天图像,并将信息推送到网页实时显示。介绍了系统的研制及为适应南极气候进行的耐低温实验,统计分析了中山站2016~2017年的全天信息数据,结果显示,中山站2016和2017年的可观测时间为772.21 h和437.38 h,可观测夜数为93 d和51 d,天光背景最大真实值为22.05 Mag/arcsec 2,年平均气温为-10.6℃,最高气温19.1℃,最低气温为-44℃,2016年平均相对湿度为55.2%。  相似文献   

3.
使用全天相机拍摄云图是现在天文界广泛使用的监测天空云量的方法。云量的估算结果对望远镜观测有重要的影响,目前对云量的估算完全由人工处理,费时、费力而且准确度不够高,判别过程也完全依赖个人的经验。为此,提出一种针对全天相机云图的云量自动计算方法。首先针对多云和少云云图分别使用时间分割法和差分法去除云图中月亮影响区域;然后对去除月亮影响区域后的多云云图进行二值化处理,将云与背景进行分割,并使用基于灰度值的聚类算法对少云云图的云的厚薄进行量化分类;最后计算总云量,并依据30 m口径望远镜(Thirty Meters Telescope,TMT)判读全天相机云图的方法对云图进行自动分类。实验结果表明,该方法可提高云图判读效率,在有效解放人工的同时,也达到了平均值为76. 67%的识别准确率。  相似文献   

4.
全天云图监测对天文观测至关重要,目前大多数天文台站安装了实时云图监测相机,但共同的难题是如何在光线变化较大的情况下进行正确曝光。为解决这一问题,深圳市天文台自行开发了一套拍摄控制系统,根据相机可用的拍摄参数,计算得到曝光值索引曲线,采用0.3作为曝光值误差,在亮度变化较大的各种环境下进行正确曝光拍摄全天云图,并采用最大类间方差自适应阈值算法,对云进行有效识别。经多次测试,系统在亮度变化较大较快的环境下能拍摄到正确曝光的云图,为天文观测计划提供了极大的便利。  相似文献   

5.
云对天文观测具有重要影响,云量是衡量天文台址质量的重要指标.位于姚安天文观测站的红外云量仪,用于获取实时的全天高空间分辨率云图.结合空间碎片的实际观测,严格按照天文夜对累积1yr(2015-08-01—2016-07-31)的夜间云量数据进行统计和分析.姚安站的年平均夜间云量为4.42成,年天文可用夜为236个,其中测光夜98个,半测光夜44个,光谱夜94个.云量具有明显的两季特征:5月至10月间为雨季,云量显著增多,其中7月份观测条件最差;11月至次年4月为旱季,云量较少,每月的天文可用夜均在23个以上,其中1月份的测光夜最多,3月份的天文可用夜最多.结合云层对天文观测的威胁程度,统计不同云量的总时间和每月的云量分布情况,评估观测站的气象条件,为合理安排观测计划提供参考.  相似文献   

6.
天文观测站夜天空星像星等信息和天区分布信息可用于指导多设备巡天观测.建立全天相机监测系统(Monitoring all-sky system)对本地天区夜天空实时监测,获取的监测图像需要有效的方法进行处理以提取全天图像星像信息.由于全天图像视场大和高阶扭曲的影响,采用天顶等距投影与多项式函数组合的方法计算图像的底片常数.天文定位的均方根残差约为0.15个像素.通过对图像中亮星部分测光得到的星等差,改正大气消光误差.最后使用HEALPix (Hierarchical Equal Area isoLatitude Pixelation)方法实现天区划分和每个天区可观测极限星等值的存储.  相似文献   

7.
全天相机云图是监测云量的重要手段,提出了一种新的云量测量量化指标——云分布密度(Cloud Distribution Density of ASI Images, ASICDD),并基于该指标建立全天相机云图自动分类系统。首先对云图进行去噪,利用最大类间方差法(Otsu)分割云区域;然后对去除背景的云区域图像使用云分布密度计算云量;最后使用4种传统的分类器(支持向量机、K最近邻、决策树和随机森林)根据计算数值进行自动分类并评估各分类器的性能。结果表明,云分布密度可作为评判全天相机云图云量的数值指标;基于云分布密度建立的云图自动分类系统实现了较高的识别准确率,其中随机森林法的分类效果最好,各类云图的识别准确率达到95%以上。  相似文献   

8.
全天相机已广泛应用在气象、天文等领域,在监测云量、夜天光、流星时,需要准确掌握相机的姿态参数,特别是在安装和运维中造成的偏差。旨在开发一套基于虚拟天文馆的像场测量方法,通过比较参考恒星的虚拟坐标及其像点的实测坐标,高精度地测量相机的姿态参数。使用中国科学院云南天文台安置于四川无名山观测站的全天相机,分析了2016年至2017年获得的4组全天图像,采集了容量分别约为10、50、200的恒星样本,通过Stellarium虚拟天文馆获得了恒星的地平坐标,对全天相机像场的天顶位置、测者子午线方向等基本参数进行了精确的测量。主要结果为:(1)开发了一种基于虚拟天文馆计算恒星地平坐标功能的测量方法,使姿态测量建立在容量较大的参考恒星上,该方法准确度高,对设备配置的依赖性低,具有较强的可移植性;(2)采用网格法对图像天顶的定位达到了亚像素的精度,有望满足高精度定位监测的需要;(3)全天相机姿态精度的首要指标是光轴的竖直性,光轴偏离天顶对投影的轴对称造成不可忽略的影响;(4)维护作业对圆形像场几何参数的改变甚微,但可能改变指向和旋转角,并需要重新测量;(5)生成了符合制图惯例的可视化产品,为监测数据的深入分析奠定了基础。  相似文献   

9.
台址信息监测系统是现代天文观测台站必备的辅助系统之一,在开展天文实测过程中发挥着重要的作用。首先介绍了丽江天文观测站的基本概况,目前己经投入运行的天文望远镜设备,以及丽江2.4 m通用光学望远镜上配备的科学终端仪器。随后论述了国内外优秀天文观测台站己配备的台址信息监测设备,重点阐述了丽江天文观测站建立的台址信息监测系统。分析了丽江站一个年度的气象数据、云量数据、可观测小时数、可观测夜数和天光背景数据,以及近几年测量的大气视宁度数据,得出丽江站全年的光学天文观测条件的基本特征。根据实际观测情况,将丽江2.4 m望远镜全年的观测时间段分为三个等级,为国内天文学家申请使用并开展科学观测提供参考。  相似文献   

10.
云量观测是天文选址的重要考察项目.本文报告一种数字云量观测的处理方法,可以快速准确地计算选址点的云量值,避免了目视云量观测的人为误差.云量处理实验结果表明,该方法是合理可靠的, 在天文选址后期工作中能有效使用.该方法应用于西藏物玛观测点的云量观测统计,给出与同期目视云量的相关比较,并讨论数字云量处理的精度和改进方案.  相似文献   

11.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

12.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

13.
It is suggested that the overall early melting of the lunar surface is not necessary for the explanation of facts and that the structure of highlands is more complicated than a solidified anorthositic ‘plot’. The early heating of the interior of the Moon up to 1000K is really needed for the subsequent thermal history with the maximum melting 3.5 × 109 yr ago, to give the observed ages for mare basalts. This may be considered as an indication that the Moon during the accumulation retained a portion of its gravitational energy converted into heat, which may occur only at rapid processes. A rapid (t < 103 yr) accretion of the Moon from the circumterrestrial swarm of small particles would give necessary temperature, but it is not compatible with the characteristic time 108 yr of the replenishment of this swarm which is the same as the time-scale of the accumulation of the Earth. It is shown that there were conditions in the circumterrestial swarm for the formation at a first stage of a few large protomoons. Their number and position is evaluated from the simple formal laws of the growth of satellites in the vicinity of a planet. Such ‘systems’ of protomoons are compared with the observed multiple systems, and the conclusion is reached that there could have been not more than 2–3 large protomoons with the Earth. The tidal evolution of protomoon orbits was short not only for the present value of the tidal phase-lag but also for a considerably smaller value. The coalescence of protomoons into a single Moon had to occur before the formation of the observed relief on the Moon. If we accept the age 3.9 × 109 yr for the excavation of the Imbrium basin and ascribe the latter to the impact of an Earth satellite, this collision had to be roughly at 30R, whereR is the radius of the Earth, because the Moon at that time had to be somewhere at this distance. Therefore, the protomoons had to be orbiting inside 20–25R, and their coalescence had to occur more than 4.0x109 yr ago. The energy release at coalescence is equivalent to several hundred degrees and even 1000 K. The process is very rapid (of the order of one hour). Therefore, the model is valid for the initial conditions of the Moon.  相似文献   

14.
Rozelot  J.P.  Godier  S.  Lefebvre  S. 《Solar physics》2001,198(2):223-240
In this paper we first emphasize why it is important to know the successive zonal harmonics of the Sun's figure with high accuracy: mainly fundamental astrometry, helioseismology, planetary motions and relativistic effects. Then we briefly comment why the Sun appears oblate, going back to primitive definitions in order to underline some discrepancies in theories and to emphasize again the relevant hypotheses. We propose a new theoretical approach entirely based on an expansion in terms of Legendre's functions, including the differential rotation of the Sun at the surface. This permits linking the two first spherical harmonic coefficients (J 2 and J 4) with the geometric parameters that can be measured on the Sun (equatorial and polar radii). We emphasize the difficulties in inferring gravitational oblateness from visual measurements of the geometric oblateness, and more generally a dynamical flattening. Results are given for different observed rotational laws. It is shown that the surface oblateness is surely upper bounded by 11 milliarcsecond. As a consequence of the observed surface and sub-surface differential rotation laws, we deduce a measure of the two first gravitational harmonics, the quadrupole and the octopole moment of the Sun: J 2=−(6.13±2.52)×10−7 if all observed data are taken into account, and respectively, J 2=−(6.84±3.75)×10−7 if only sunspot data are considered, and J 2=−(3.49±1.86)×10−7 in the case of helioseismic data alone. The value deduced from all available data for the octopole is: J 4=(2.8±2.1)×10−12. These values are compared to some others found in the literature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005238718479  相似文献   

15.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

16.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号