首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Welded tuffs in the Bogopol and Sijanov groups were sampled at 27 sites from 12 caldera formations in the Sikhote Alin mountain range around Kavalerovo (44.3°N, 135.0°E) for chronological and paleomagnetic studies. KAr age dates show that the welded tuffs erupted between 66 Ma and 46 Ma. All sites yield reliable paleomagnetic directions, with unblocking temperatures higher than 560°C. The high-temperature component at 12 sites and the medium-temperature component at 3 sites in the Bogopol Group show reversed polarity (D = 193.7°, I = −57.6°,95 = 8.1°). The high-temperature component at 11 sites in the Sijanov Group showed both reversed and normal polarities and its mean direction reveals no detectable deflection from north (D = −2.9°, I = 59.6°,95 = 11.2°). The combined paleomagnetic direction of the two groups yields a paleomagnetic pole of 250.5°E, 84.1°N (A95 = 8.8°), which falls near Cretaceous paleomagnetic poles from Outer Mongolia, Inner Mongolia, the North China Block and the South China Block. The Sikhote Alin area appears not to have been subjected to detectable motion with respect to East Asia since about 50 Ma. This implies that the Sikhote Alin area behaved as an integral part of East Asia during the opening of the Japan Sea at about 15 Ma. However, significant separation between the paleomagnetic poles of East Asia and Europe during the Jurassic-Paleogene implies a major relative movement between these two blocks since the Paleogene.  相似文献   

2.
The allochthonous Old Red Sandstone of Kvamshesten, western Norway, records polyphase orogenic deformation, and palaeomagnetic results from both the Devonian sediments and mylonites associated with the basal thrust define a syn- (to post-) tectonic magnetization withD = 218°,I = +3° and95 = 9.7°. The corresponding pole position (lat. 21°S, long. 324°E) suggests a Late Devonian/Early Carboniferous magnetization age (Solundian), and probably dates the time of thrust movements.  相似文献   

3.
The study area is situated along the Zolotica river in NW Russia, located within the Kola–Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of 556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, 95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = − 31.7, 95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic–Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.  相似文献   

4.
A new paleomagnetic study has been carried out on sediments of middle Cambrian age in the North Sichuan Basin (Yangtze Block). Detailed stepwise thermal demagnetizations allowed us to isolate three components. Site-mean direction derived from higher temperature components is D/I=146.9°/–17.1° (95=8.3°) yielding a pole position at 51.3°S, 166.0°E. The fold and reversal tests suggest that remanence was acquired during early stage of sedimentation. Combined with the high-qualities early Sinian (748 Ma) and middle Silurian poles obtained recently from the Yangtze block, the deriving polar track demonstrates a similar loop to that of Australia. After rotating these poles from South China to fit that of Australia, the South China Block is placed against northwestern Australia. This reconstruction favors the correlations of the Jiangnan Grenville-age orogenic belt with the Rudall belt of western Australia, and subsequently the late Proterozoic Jiangnan and Officer/Adelaide rift systems. The paleobiogeographic evidence also indicates that this configuration might maintain by the middle Devonian.  相似文献   

5.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

6.
Palaeomagnetic investigation of basic intrusives in the Proterozoic Mount Isa Province yields three groups of directions of stable components of NRM after magnetic cleaning in fields up to 50 mT (1 mT= 10 Oe). The youngest group (IA) includes results from the Lakeview Dolerite, and yields a palaeomagnetic pole at 12°S, 124°E (A95 = 11°). The second group (IB) has a palaeomagnetic pole 53°S, 102°E (A95 = 11°). The third group (IC) is derived from the Lunch Creek Gabbro and contains normal and reversed polarities of magnetization with a palaeomagnetic pole at 63°S, 201°E (A95 = 9°). Some samples from the gabbro have anomalously low intensities of remanent magnetization in obscure directions attributed to the relative enhancement of the non-dipole component of the palaeomagnetic field during polarity reversal. The present attitude of the igneous lamination is probably of primary, not tectonic origin.  相似文献   

7.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

8.
Palaeomagnetic results from the Lower Palaeozoic inliers of northern England cover the upper part of the (Middle Ordovician) Borrowdale Volcanic Series (palaeomagnetic pole 208°E, 18°S, A95 = 9.4°), minor extrusive units relating to the Caradoc and Ashgill stages of Ordovician times, intrusive episodes of Middle Ordovician and Middle Silurian to Late Devonian age, and the Shap Granite of Devonian (393 m.y.) age (palaeomagnetic pole 313°E, 33°S, A95 = 5.6°).A complete assessment of Ordovician to Devonian palaeomagnetic data for the British region shows that the pole was nearly static relative to this region for long intervals which were separated by shifts occupying no more than a few millions of years. The mean palaeomagnetic poles are: Ordovician (6°E, 16°S), Lower Silurian (58°E, 16°N), Middle Silurian/Lower Devonian (318°E, 6°N) and Middle/Upper Devonian (338°E, 26°S); the first two shifts separating these mean poles can be explained predominantly in terms of rotational movements of the crustal plate but the last involved appreciable movement in palaeolatitude.Comparison of Lower Palaeozoic palaeomagnetic data from the British region with contemporaneous data from continental Europe/North America on the Pangaean reconstruction reveals a systematic discrepancy in palaeolatitude between the two regions prior to Middle Devonian times. This discrepancy was eliminated during a few millions of years of Lower/Middle Devonian times (ca. 395 m.y.) and can be explained in terms of ca. 3500 km of sinistral strike-slip movement close to the line of the orthotectonic Caledonides. This motion is linked both in time and place to the impingement of the Gondwanaland and Laurentian supercontinents during the Acadian orogeny; this appears to have displaced the British sub-plate until it became effectively locked between the Baltic and Laurentian regions. Although movement of the dipole field relative to the British region in Lower Palaeozoic times is now well defined, nearly one fifth of the total data show that the geomagnetic field was more complex than dipolar during this interval. Until the significance of these anomalies is fully resolved, the tectonic model derived from the palaeomagnetic data cannot be regarded as unambiguous.  相似文献   

9.
Paleomagnetic field directions for the period younger than 35 Ma are obtained from igneous rocks distributed in the San'in district, Inner Zone of Southwest Japan. The remanent magnetization of samples between 30 and 35 Ma old are fairly well grouped with a mean direction of D = 65.9°, I = 48.6°, and 95 = 6.5°. This result establishes that Southwest Japan rotated clockwise 56 ± 12° during the past 30 m.y. A declination value of about 60° is observed in the rocks of 28 Ma ( D = 52.2°, I = 33.5°) and 21 Ma (D = 69.9°, I = 49.5°). Comparing this with results from dacitic rocks with an age of 15 Ma in other areas of Southwest Japan suggests that rotational motion did not occur possibly until 15 Ma. These results require that the rotation of Southwest Japan occurred just after the Shikoku Basin had been created.  相似文献   

10.
Palaeomagnetic results are reported from eight sites in an Upper Devonian basic intrusion (the Msissi norite) in southeast Morocco. Specimens from one site are suspected of having been affected by lightning, but results from the other seven sites indicate the presence of a less-stable component, probably of viscous origin. The pole position corresponding to the stable component(0.5°S, 25°E, A95 = 16.5) is interposed between the Middle Cambrian/Ordovician pole and the Lower Carboniferous pole on the African polar wander curve. When the southern continents are reassembled on the Smith/Hallam reconstruction of Gondwanaland the new Moroccan Devoniån pole is in excellent agreement with the corresponding portion of the main Australian polar-wander curve. This places additional constraints on the possible date of fusion of the separate Southeast Australian plate with the rest of Gondwanaland, postulated recently on palaeomagnetic grounds by M.W. McElhinny and B.J.J. Embleton (1974). The combined African/Australian polar-wander curve is compared with the South American curve, and two possible interpretations of available data are discussed, one involving possible relative tectonic motion between South America and the rest of Gondwanaland during the Lower and Middle Palaeozoic, and the other, favoured here, requiring a reassessment of the ages of several South American pole determinations.  相似文献   

11.
A palaeomagnetic pole is established at 25.1°N 273.9°E (dp = 10.6°, dm = 14.3°) from the norite-charnockite complex at Angmagssalik, emplaced at 1800 Ma. A somewhat older palaeomagnetic pole at 4.2°S 246.7°E (dp = 4.2°, dm = 8.3°) is obtained from Archaean gneisses close to the northern boundary of the Nagssugtoqidian mobile belt; reversals of magnetization are present here. Both magnetizations were imposed during slow cooling following the (late) Nagssugtoqidian metamorphism.In general the gneisses, dyke amphibolites and granite of the Nagssugtoqidian mobile belt are unstably magnetized; their magnetization is attributable to the Earth's present field, and is often extremely weak.A pseudotachylyte within the Archaean gneisses has had a long cooling history. A fragment of the remanence reflects the magnetization characteristic of the Archaean gneisses, whereas most of the magnetization corresponds to a palaeomagnetic pole near that of the Angmagssalik complex. The pseudotachylyte is much older than its magnetizations.An apparent polar wander path is presented for Greenland at ca. 1750 Ma based on the above results and data from west Greenland.  相似文献   

12.
Palaeomagnetic study of Middle Liassic siltstones shows a stable magnetization with a mean direction of D = 12.3°, I = 64.6° (N = 60, k = 26, α95 = 3.9°) corresponding to a palaeomagnetic pole at 79.8°N, 125.6°E, similar to that for southern Germany and confirming predictions based on palaeogeographic reconstructions using North American data. Sideritic concretions of Lower Liassic age show a higher magnetic stability with a mean direction of D = 12.6°, I = 61.4° (N = 125, k = 50, α95 = 1.8°) which is not significantly different from the siltstones. This confirms the sedimentological evidence that suggests that such concretions grew very shortly after deposition, i.e. within the Liassic, and suggests that similar concretions of other ages could thus be used for palaeomagnetic studies. Although the Liassic palaeomagnetic pole (76.9°N, 134.7°E), based on this work, appears valid it is still not possible to evaluate a sensible Mesozoic polar wandering curve for the North Atlantic bordering continents.  相似文献   

13.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

14.
We carried out an integrated paleomagnetic, rock-magnetic and paleointensity study of Miocene volcanic succession from the trans-Mexican volcanic belt (TMVB) north of Guadalajara. A total of 37 consecutive basaltic lava flows (326 oriented standard paleomagnetic cores) were collected at Lazo locality. Continuous susceptibility measurements with temperature and hysteresis experiments yield in most cases reasonably reversible curves with Curie points close to that of pseudo-single-domain magnetite. Two geomagnetic reversals were observed in the 300 m thick composite section. Paleosecular variation was lower than the one observed in general during Miocene. It appears that the volcanic units have been emplaced during a relatively short time span of about 1 Ma. The mean paleomagnetic directions obtained from this study do not differ significantly from that expected for the middle Miocene. The mean paleomagnetic direction calculated from all data is I=31.1°, D=354.6°, k=124 and 95=2.1°, N=37. Seventy-two samples with apparently preserved primary magnetic mineralogy and without secondary magnetization, mostly belonging to reverse polarity chron were pre-selected for Thellier paleointensity determination. The flow-mean paleointensity values are ranging from 22.4±3.4 to 53.8±6.0 μT and the corresponding virtual dipole moments (VDMs) are ranging from (5.4±0.8) to (12.0±1.4)×1022 A m2. This corresponds to mean value of (7.7±2.2)×1022 A m2, which is close to present day geomagnetic field strength. Altogether, our data suggest the existence of relatively high geomagnetic field strength undergoing low fluctuations.  相似文献   

15.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

16.
拉萨地块林周盆地白垩系红层的古地磁数据一直都有较大争议.过去认为磁倾角变浅可能是造成这些分歧的主要原因.我们在林周盆地设兴组背斜两翼进行了系统的古地磁采样,15个采样点的特征剩磁分量在倾斜校正和倾伏褶皱校正后平均方向为D=339.3°,I=22.9°(α_(95)=5.1°).特征剩磁分量在大约69%展开时获得最大集中,表明其为同褶皱重磁化;此时平均方向为D=339.1°,I=27.3°(α_(95)=4.1°),对应的古地磁极为65.4°N,327.5°E(A_(95)=3.5°),参考点29.3°N/88.5°E的古纬度为15.0°N±3.5°.薄片镜下分析显示赤铁矿为次生矿物,岩石磁组构(AMS)也表现为过渡型构造变形组构.样品的特征剩磁方向应为重磁化的结果,E/I(elongation vs inclination)校正法显示特征剩磁方向并没有发生倾角变浅.根据区域构造,重磁化时代约为72.4±1.8 Ma到64.4±0.6 Ma.综合考虑拉萨地块东西部的古地磁数据以及地震层析成像资料后我们认为,碰撞前拉萨地块大约呈NW-SE向准线性分布,并处于~10°N-15.0°N;自~70 Ma以来,拉萨地块与稳定欧亚大陆之间至少存在1200±400 km(11.1°±3.5°)的南北向构造缩短量;印度大陆与欧亚大陆的碰撞不应晚于55 Ma.  相似文献   

17.
Of 16 sites collected in the Taru grits (Permian) and Maji ya Chumvi beds (Permo-Triassic) of East Africa only 6 sites from the Maji ya Chumvi sediments gave meaningful palaeomagnetic results. After thermal cleaning the 6 sites (32 samples) give an Early Triassic pole at 67°N, 269°E with A95 = 17° in excellent agreement with other African Mesozoic poles. There are now 26 Mesozoic palaeomagnetic poles for Africa from widely diverse localities ranging in present latitude from 35°N to 30°S. The poles subdivide into Triassic (17 poles) and Cretaceous (9 poles) groups whose means are not significantly different. The palaeomagnetic pole for Africa thus remained in much the same position for 170 m.y. from Early Triassic to Late Cretaceous. The data form an especially good set for estimating the palaeoradius using Ward's method. Values of 1.08 ± 0.15 and 1.03 ± 0.19 times the present radius are deduced for the Triassic and Cretaceous respectively with a mean value of 1.08 ± 0.13 for all the Mesozoic data combined. The analysis demonstrates that hypotheses of earth expansion are very unattractive.  相似文献   

18.
Shape analysis of Pacific seamounts   总被引:2,自引:0,他引:2  
Shape statistics have been compiled from 85 profiles of well-surveyed Pacific seamounts in the height range 140–3800 m. A flat-topped cone was fit to each seamount's cross-sectional profile maintaining the slopes of the sides as closely as possible. On each profile a basal widthdb, a summit widthdt, and a maximum heighth, were measured. The height-to-basal-radius ratio isξh is estimated by the ratio2hdb and flatnessf by the ratiodtdb. Slope angleφ = arctan(ε) is estimated fromε =2h(db − dt). Summit height and basal radius are found to be highly correlated (r = 0.93). The 85-point sample mean of the height-to-basal-radius ratio isξh = 0.21 ± 0.08 implying that a seamount's summit height is typically one fifth its basal radius. Despite the high correlation, individual points show some scatter, and there may be groupings into different morphological types. For example, all but one of the seamounts with summit heights above 1000 m have values ofξh that are larger than the sample mean. The 85-point sample mean of flatness isf = 0.31 ± 0.18. Data points show a large scatter with values off varying between 0 (a pointy cone) and 0.69 (a flat-topped cone). A histogram representation of flatness, however, indicates that certain values off may be more common than others: the histogram shows a bimodal distribution with maxima occurring at values off in the ranges 0.10–0.20 and 0.35–0.50. Moreover, there is some evidence that the mean flatness decreases with summit height so that the preferred shape of a large-sized seamount may be a pointy cone. Slope angle has an 85-point sample mean ofφ = 18 ± 6°; individual values ofφ vary between 5° and 36°. In addition to having a lower than average mean flatness seamounts with heights above 2600 m also have a lower than average mean slope angle (15°). To determine which variables account for most of the observed variation in the seamount shapes, a multivariate principal component analysis was performed on the data using five shape variables (summit height, basal radius, summit radius, flatness, and slope). The analysis indicates that most of the variation is described by two variables: flatness and summit height.  相似文献   

19.
Permo-Triassic and Precambrian dolerites have been collected for palaeomagnetic research in Suriname (South America) at 24 sites (280 oriented cores). After A.F. or thermal demagnetization, consistent directions were obtained for the following groups: Permo-Triassic (227 × 106 y), 10 sites, 90 samples, D = 358°, I = −7°, pole 82° S, 40° W; Precambrian (around 1.550−1.650 × × 109 y), 2 sites, 17 samples, D = 277°, I = +35°, pole position 8° S, 53° E; Precambrian (about 1.750 × 109 y), 2 sites, 30 samples, D = 314°, I = +3°, pole 44° S, 30° E. Precambrian pole positions for South America, Africa, North America and Europe are discussed.  相似文献   

20.
The pressure dependence of the three lattice parameters and unit cell volume of fayalite (Fe2SiO4 olivine) was determined by X-ray diffraction under hydrostatic pressures up to 70 kbar. In order to eliminate stress inhomogeneity within a composite material consisting of a specimen mixed with an internal-pressure standard, a liquid (1 : 1 mixture of ethanol and methanol) was used as a pressure-transmitting medium. The isothermal bulk modulus calculated on the basis of the second-order Birch-Murnaghan equation of state gives the values K0 = 1.19 ± 0.10 Mbar and K0′ = 7 ± 4, and if we assume K0′ = 5: K0 = 1.24 ± 0.02 Mbar. Three axes of fayalite were found to be compressible in the following order, b >c >a. Comparisons with the results obtained under non-hydrostatic compression are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号