首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use coseismic GPS data from the 1999 Chi-Chi, Taiwan earthquake to estimate the subsurface shape of the Chelungpu fault that ruptured during the earthquake. Studies prior to the earthquake suggest a ramp–décollement geometry for the Chelungpu fault, yet many finite source inversions using GPS and seismic data assume slip occurred on the down-dip extension of the Chelungpu ramp, rather than on a sub-horizontal décollement. We test whether slip occurred on the décollement or the down-dip extension of the ramp using well-established methods of inverting GPS data for geometry and slip on faults represented as elastic dislocations. We find that a significant portion of the coseismic slip did indeed occur on a sub-horizontal décollement located at 8 km depth. The slip on the décollement contributes 21% of the total modeled moment release. We estimate the fault geometry assuming several different models for the distribution of elastic properties in the earth: homogeneous, layered, and layered with lateral material contrast across the fault. It is shown, however, that heterogeneity has little influence on our estimated fault geometry. We also investigate several competing interpretations of deformation within the E/W trending rupture zone at the northern end of the 1999 ground ruptures. We demonstrate that the GPS data require a 22- to 35-km-long lateral ramp at the northern end, contradicting other investigations that propose deformation is concentrated within 10 km of the Chelungpu fault. Lastly, we propose a simple tectonic model for the development of the lateral ramp.  相似文献   

2.
The Siwalik Group which forms the southern zone of the Himalayan orogen, constitutes the deformed part of the Neogene foreland basin situated above the downflexed Indian lithosphere. It forms the outer part of the thin-skinned thrust belt of the Himalaya, a belt where the faults branch off a major décollement (MD) that is the external part of the basal detachment of Himalayan thrust belt. This décollement is located beneath 13 Ma sediments in far-western Nepal, and beneath 14.6 Ma sediments in mid-western Nepal, i.e., above the base of the Siwalik Group. Unconformities have been observed in the upper Siwalik member of western Nepal both on satellite images and in the field, and suggest that tectonics has affected the frontal part of the outer belt since more than 1.8 Ma. Several north dipping thrusts delineate tectonic boundaries in the Siwalik Group of western Nepal. The Main Dun Thrust (MDT) is formed by a succession of 4 laterally relayed thrusts, and the Main Frontal Thrust (MFT) is formed by three segments that die out laterally in propagating folds or branch and relay faults along lateral transfer zones. One of the major transfer zones is the West Dang Transfer Zone (WDTZ), which has a north-northeast strike and is formed by strike-slip faults, sigmoid folds and sigmoid reverse faults. The width of the outer belt of the Himalaya varies from 25 km west of the WDTZ to 40 km east of the WDTZ. The WDTZ is probably related to an underlying fault that induces: (a) a change of the stratigraphic thickness of the Siwalik members involved in the thin-skinned thrust belt, and particularly of the middle Siwalik member; (b) an increase, from west to east, of the depth of the décollement level; and (c) a lateral ramp that transfers displacement from one thrust to another. Large wedge-top basins (Duns) of western Nepal have developed east of the WDTZ. The superposition of two décollement levels in the lower Siwalik member is clear in a large portion of the Siwalik group of western Nepal where it induces duplexes development. The duplexes are formed either by far-travelled horses that crop out at the hangingwall of the Internal Décollement Thrust (ID) to the south of the Main Boundary Thrust, or by horses that remain hidden below the middle Siwaliks or Lesser Himalayan rocks. Most of the thrusts sheets of the outer belt of western Nepal have moved toward the S–SW and balanced cross-sections show at least 40 km shortening through the outer belt. This value probably under-estimates the shortening because erosion has removed the hangingwall cut-off of the Siwalik series. The mean shortening rate has been 17 mm/yr in the outer belt for the last 2.3 Ma.  相似文献   

3.
Viscous components in Jura folding due to pressure solution include discrete stylolites in limestones and diffuse flowage, particularly viscous folding, in Triassic anhydrites. Though increase of equilibrium solubility on the boundary of the stressed solid is well understood, the kinetic aspects of transport of the solute by diffusion and the movement of pore water are not known quantitatively and can be assessed only qualitatively on the basis of observations in nature and laboratory experiments. Apparently the creation of secondary tectonic pore space — macroscopic shear and tension joints in limestones and microscopic dilatancy cracks in anhydrite — is essential; it is possibly the rate-determining process. Stylolites in limestones, though ubiquitous, are quantitatively negligible, the overwhelming mass transport having occurred along discrete surfaces of failure. Flow of anhydrite, on the other hand, has been essential for basal décollement and cushioning under the folds.  相似文献   

4.
The east and west coasts of Pembrokeshire (SW Wales) provide two sections through the Variscan fold and thrust belt. The evolution of these structures is interpreted in terms of a thin-skinned tectonic model. Balanced cross-sections are constructed for the high-level imbricate sequences, and these allow reasonably accurate estimates of shortening to be made. Basement control on structures developed in the Upper Carboniferous cover rocks is minimal, though some thrust ramp positions may be determined by the location of earlier normal faults.The thrust belt may be divided into two parts, according to the depth to the décollement horizon. In the north, imbricate fans developed from a shallow-level detachment (<1 km) which dips gently south. In the southern part, a deeper level of décollement and thicker sedimentary pile gave rise to large-amplitude folds.Shortening is heterogeneous, and both thrust periodicity and fold style are partly determined by rheology. Cumulative tectonic displacement increases to the west across Pembrokeshire, resulting in a net clockwise rotation of about 40°.  相似文献   

5.
Dans le Valanginien supérieur (Marnes à Toxaster et Grande Lumachelle) des Alpes-de-Haute-Provence, la succession de deux faunes de bryozoaires est observée. Parmi les causes du changement de faune, le remplacement d'un fond vaseux en eau calme (Marnes à Toxaster) par un fond sableux coquillier en eau assez agitée (Grande Lumachelle) est certainement important. Cependant, ces modifications résultent elles-mêmes d'événements plus généraux.Le changement de faune peut être comparé à celui qui intervient dans le Jura au début de la zone à Trinodosum. La faune des Marnes à Toxaster (zone à Verrucosum) montre certaines des espèces caractéristiques de la “faune 1” du Jura et, de plus, les deux mêmes espèces dominantes. Le milieu de vasière des Marnes à Toxaster, opposé à celui de plate-forme carbonatée du Jura, entraîne seulement un appauvrissement spécifique. Quant à la faune de la grande Lumachelle, elle est absolument semblable à la “faune 2” récoltée dans les Marnes à bryozoaires et le Calcaire à Alectryonia du Jura.Ce parallélisme des deux faunes avec celles du Jura, malgré les différences de faciès sédimentaire, montre que le changement de faune, maintenant reconnu sur près de 400 km, résulte d'une même cause principale. Ainsi, l'hypothèse d'un refroidissement que j'ai proposée pour le Jura semble pouvoir être étendue à la Provence.The change of bryozoan fauna in the upper Valanginian of the Alpes-de-Haute-Provence. Parallelism with the crisis observed in the Jura at the same time.In the upper Valanginian (Marnes à Toxaster and Grande Lumachelle) of the Alpes-de-Haute-Provence, the succession of two bryozoan faunas is observed. Among the reasons for the change of fauna, the replacement of a muddy bottom in calm water (Marnes à Toxaster) by a sandy-shelly bottom in rather agitated water (Grande Lumachelle) is certainly important, but these modifications are the result of more general events. The change of fauna could be compared with the one that took place at the beginning of the Trinodosum Zone in the Jura. The fauna of the Marnes à Toxaster (Verrucosum Zone) shows some characteristic species of the “faune 1” of the Jura and, moreover, the same two dominating species. The muddy basin environment of the Marnes à Toxaster, unlike the carbonate platform environment in the Jura, involves only a specific impoverishment. As for the fauna of the Grande Lumachelle, it is totally identical to the “faune 2” found in the Marnes à bryozoaires and the Calcaire à Alectryonia of the Jura.This parallelism of the two faunas with those of the Jura, in spite of the differences of sedimentary facies, shows the change of the fauna now observed over about 400 km, has the same principal cause. Thus it seems possible to extend the cooling hypothesis I have proposed for the Jura, to Provence.  相似文献   

6.
An interpretation of the MOIST seismic reflection profile along the north coast of Scotland has shown the pattern of deep crustal structure across the margin of the Caledonian orogen with the Hebridean cratonic foreland to the northwest. It is proposed that the lower crust of the orogen is characterised by a suite of easterly dipping thrusts that divide it into flakes that were imbricated during lateral compression of the lithosphere. The effects of concomitant and subsequent uplift and erosion led to the removal of the major part of the upper crust within the orogen so that the present crust and Moho are largely the relics of the Caledonian lower crust. As time progressed, the thrust front encroached further into the foreland and cut down to a basal décollement at successively deeper levels. This behaviour is explained as a consequence of the response of the brittle-ductile transition to changing the temperature regime, rock composition and strain rate as the orogeny proceeded. Palinspastic reconstructions of the whole lithosphere illustrate the process. Following the compressional phase of the orogeny, uplift led to initiation of extension and the reactivation of the thrusts as normal listric faults. Rotation of basement blocks gave rise to wedge-shaped sedimentary basins.  相似文献   

7.
Veins in the Sicilian accretionary wedge were studied petrographically and geochemically with the aim to investigate the relation between fluid flow in a décollement horizon and in overlying Mesozoic basinal sediments. Fluids expelled along the décollement horizon precipitated calcite cements that show a broad spread in stable isotope signatures and that generally have rather high Fe and Mn content. The fluids most likely originated from mixing of hot deep metamorphic fluids and dewatering of the clay unit along which the principal overthrusting occurred.Synkinematic veins in the overlying basinal units are cemented with calcite. The trace element content and δ13C signatures of these veins are host-rock dependent, pointing to a host-rock buffering effect. Petrographic observations indicate that calcite cements have been recrystallized. Thus the cements could have inherited their geochemical signatures from the host-rock during recrystallization. This is also supported by their δ18O signature, which is controlled by temperature fractionation.  相似文献   

8.
Electrical images recorded with Resistivity-At-Bit (RAB) from two sites drilled during Ocean Drilling Program (ODP) Leg 196 were analyzed to study the effects of subduction at the Nankai margin. For the first time in the history of scientific deep-sea drilling in ODP, in situ complete borehole images of the décollement zone were obtained. Analyses of all drilling-induced fracture data indicated that the maximum horizontal compressive stress (SHmax) axes have an azimuth of 303°, and analyses of breakout data from RAB images indicated an azimuth of 310°. These azimuths approximate the convergence direction of the Philippine Sea plate towards the Eurasian plate. The frontal thrust at Site 808 was encountered at about 389 mbsf. Density, porosity, resistivity, and gamma ray data change across the frontal thrust. The décollement zone at the deformation front was identified between 937 and 965 mbsf. The base of the décollement is sharply defined as the maximum extent of conductive fracturing and is marked by abrupt changes in physical properties [Mikada, H., Becker, K., Moore, J.C., Klaus, A., Austin, G.L., Bangs, N.L., Bourlange, S., Broilliard, J., Brückmann, W., Corn, E.R., Davis, E.E., Flemings, P.B., Goldberg, D.B., Gulick, S.S., Hansen, M.B., Hayward, N., Hills, D.J., Hunze, S., Ienaga, M., Ishiguro, H., Kinoshita, M., Macdonald, R.D., McNeill, L., Obana, S., Hong, O.S., Peacock, S., Pettigrew, T.L., Saito, S., Sawa, T., Thaiprasert, N., Tobin, H.J., Tsurumi, H., 2002. Proc. ODP, Initial Rep., 196, College Station, TX, (Ocean Drilling Program)]. The upper boundary of the décollement is marked by several sets of conductive fractures and by high variability in physical properties. The décollement zone is characterized by intense brittle fracturing. These fractures are considered to be the consequence of cyclic stresses and high fluid pressures in this zone. We analyzed fracture dips and their orientations at both sites and found that they are all consistent with a unique stress field model surrounding the two sites.  相似文献   

9.
This paper focuses on the behavior of a roof sequence in the Appalachian Plateau of West Virginia, U.S.A., and emplacement of the Wills Mountain duplex with 17.5 km of displacement. Unlike the Plateau along strike in Pennsylvania and New York where forethrusting was previously documented, this roof sequence lacks an underlying salt-dominated roof décollement. Kinematic analyses reveal that the roof sequence in the West Virginian Plateau accommodated about two-thirds of the 17.5 km of shortening by the adjacent Wills Mountain duplex, as a forethrusting kinematic response. The remaining shortening imbalance of about 5 km between the duplexes and younger roof sequence rocks is accommodated by additional forethrusting further into the foreland and local compensation. This kinematic response matches that along strike in the central Appalachians despite the loss of the salt décollement. We interpret that an Ordovician shale-dominated formation was sufficiently weak to substitute for the salt horizon. Thus, a weak mechanical unit rather than specifically a salt décollement is a necessary prerequisite for forethrusting. A contributing factor to forethrusting may be the subvertical front of the Wills Mountain duplex, which inhibited other responses by the roof sequence. Mesoscale and smaller processes, including grain-to-grain pressure solution, twinning and cleavage formation account for over 75% of the shortening in the roof sequence, and, if ignored, would result in an erroneous interpretation of backthrusting or local compensation. This result suggests that failure to consider all deformation scales could lead to incorrect kinematic conclusions in other tectonic systems.  相似文献   

10.
This work discusses the state of knowledge (mainly tectonic and geophysical data) about the Tonale line and other “peri-Adriatic” lines in the Central and Eastern Alps. The chain is here cut into a mosaic of independent blocs, separated by faults with basic injections in some places. The Tonale fault had a dextral movement in Oligo-Miocene times; it is connected with the Austrian “Thermenlinie”, and not to the Pusteria—Gail line. An attempt at chronology is presented.

Résumé

Ce travail fait le point des connassiances, principalement tectoniques et géophysiques, sur la linge du Tonale et les accidents “péri-adriatiques” récents des Alpes centrales et Orientales. Dans cette région, la chaine est découpée en une mosaïque de blocs indépendants, séparés par des accidents injectés ça et là de masses basiques. L'accident du Tonale, Qui a joué en décrochement dextre à l'Oligo-Miocéne, est relié à la Thermenlinie d'Autriche Et non à la linge Pusteria—Gail. Un essai de chronologie est présenté.  相似文献   

11.
The southern Chilean convergent margin, between 50° and 57° S, is shaped by the interaction of the three main plates: Antarctic, South America and Scotia. North of 53° S, the convergence between Antarctic and South America plates is close to orthogonal to the continental margin strike. Here, the deformational style of the accretionary prism is mainly characterized by seaward-verging thrusts and locally by normal faults and fractures, a very limited lateral extension of prism, a very shallow dip ( 6°) décollement, and subduction of a thick and relatively undeformed trench sedimentary sequence. South of 53° S, convergence is oblique to the margin, locally, the trench sediments are proto-deformed by double vergence thrusting and the front of the prism grows through landward-verging thrusting. The décollement is sub-horizontal and deep, involving most of the sediment over the oceanic crust in the accretionary process, building a comparatively wide and thicker prism. A Bottom Simulating Reflector is present across the whole prism to the abyssal plan, suggesting the presence of gas in the sediments.The analysis of P- and S-wave velocity reflectivity sections, derived by amplitude versus offset technique (AVO), detailed velocity information and the velocity-derived sediment porosity have been integrated with the structural analysis of the accretionary prism of two selected pre-stack depth migrated seismic lines, aiming to explain the relation between fluid circulation and tectonics.Accretion along double vergence thrust faults may be associated with the presence of overpressured fluid, which decreases the effective shear stress coefficient along the main décollement and within the sediments, and modify the rheolgical properties of rocks. The presence of an adequate drainage network, represented by interconnected faults and fractures affecting the entire sedimentary sequence, can favour the escape of pore fluid toward the sea bottom, while, less permeable and not faulted sediments can favour fluid accumulations. Gravitational and tectonic dewatering, and stratigraphy could control the consolidation and the pore overpressure of sediments involved in subduction along the trench. The results of our analysis suggest the existence of a feedback between tectonic style and fluid circulation.  相似文献   

12.
Features associated with gravity-induced slumping in deep-water Eocene sediments of the Ainsa basin are described and four aspects are selected as being especially significant. These are: extensional strain, contractional strain, strain overprinting and clastic dykes. Slump strain is interpreted as a consequence of the initiation, translation and termination phases of slump development and is explained in terms of a dislocation model. The initial phase of development involves the propagation of a failure through undisturbed sediment and this imparts a characteristic strain above the décollement surface. Translation of the failed body involves sequential velocity changes which also deform the moving sediment. During the termination phase a type of dislocation, here named an anti-dislocation, migrates along the basal failure when a slump regains cohesion with the substrate. Clastic dykes are interpreted as dewatering structures initiating at basal faults which have associated high pore fluid pressure. Dewatering of slumped décollement sheets may be a significant phase in the termination of movement of failed sediment bodies.  相似文献   

13.
One of the puzzling features of the southern end of the Rhine graben is the Dinkelberg-Tabular Jura block on the eastern shoulder of the graben. It is dissected by a large number of faults, the most notable ones forming a field of narrow little grabens and half-grabens whose bordering faults converge at the level of the Middle Triassic evaporites, which points to décollement at that horizon. The little grabens were traditionally considered to be of Oligocene age, coeval with the main taphrogenesis of the Rhine graben. Two hypotheses were offered for their formation, one ascribing them to extension on the extrados of large basement folds, the other to gravity sliding on paleoslopes. Recent field work uncovered overwhelming evidence for an Eocene age of the little grabens, the time of the initial phase of Rhine graben formation. At that time there were neither large basement folds nor paleoslopes of any significance, and therefore the two hypotheses offered until now do not work. However, the map-view pattern of the field of faults offers a somewhat unusual way out of the dilemma. This pattern is most prominently displayed in the Dinkelberg area north of the Rhine. There a lane of narrow décollement grabens with a mean NNE strike is confined within the NW- striking Dinkelberg graben, which is much wider and rooted in the basement. It is also very shallow, with a subsidence on the order of 100 m. The lane of décollement grabens forms a dextral en-échelon pattern with respect to the Dinkelberg graben, suggesting stretching of the post-evaporite sequence above a basement essentially extended by strike slip. This model, though not as clearly expressed, is also compatible with the data in the rest of the Dinkelberg-Tabular Jura block. It also fits surprisingly well a theoretical model by Withjack and Scheiner (1982) that predicts a dominance of strike-slip in the marginal area of a system consisting of extension superimposed on doming.  相似文献   

14.
The style of deformation in thin-skinned fold-and-thrust belts is critically dependent upon the resistance to sliding along the detachment between the mass of deforming sediments and the underlying rocks. Evaporites can provide an extremely weak horizon within which a basal detachment can form and along which only a relatively small shear traction can be supported. Fold-and-thrust belts that form atop a salt layer, such as the Appalachian Plateau, the Franklin Mountains in northwestern Canada, and the Jura of the Alps, among others, share several readily observable characteristics. As predicted by a simple mechanical model for fold-and-thrust belts, a detachment in salt permits a thrust belt to have an extremely narrow cross-sectional taper. In addition, predicted orientations of the principal stress axes over a salt décollement are consistent with the commonly observed lack of a consistently dominant vergence direction of structures within the thrust belt. Other common attributes of salt-basal thin-skinned deformation include the presence of several widely but regularly spaced folds and abrupt changes in deformational style at the edge of the salt basin.  相似文献   

15.
A comparison is made between the Gavarnie thrust and the Mérens Fault in the Axial zone of the Pyrenees. The former has a gentle dip and quite a large displacement (at least 12 km) but does not cut through either Hercynian or Alpine isograds. The latter has a smaller displacement (~ 5 km) but dips steeply and cuts through both Hercynian and Alpine isograds at a high angle. On this basis and on the basis of shear zone geometries immediately north of it, it is proposed that the Mérens Fault nucleated as a steeply (65°–80°) dipping structure, while the Gavarnie thrust nucleated with a shallow attitude. The Mérens Fault is not a backward-rotated thrust fault, nor is it the root zone for any major nappe structure. Similar steep ductile structures occur within the Gavarnie nappe and may reflect considerable internal strain in basement lithologies.The relationship between steep and shallow structures is not yet clear; the shear zones may pre-date the thrusting in which case they may be thick-skinned structures affecting the whole lithosphere, or they may be contemporary with thrusting reflecting only local thickening above a décollement.Rheological models can be used to test proposed geometrical and kinematic models for the lithosphere-scale evolution of the Pyrenees. Suggested models are dominated by a cool, rigid, high-level mantle wedge beneath the North Pyrenean zone which probably controlled the location of north-dipping thrust faults. Thick-skinned shortening is possible in thick crust in the Axial zone but is very unlikely in the North Pyrenean zone where steeply rooted structures would have to cut through the strongest part of the lithosphere.  相似文献   

16.
The Larderello geothermal field is located in the Inner Northern Apennines, in an area which has been subject to extension since the Early Miocene. The latest extensional episode (Pliocene–Present) has resulted in the formation of NW-trending, NE-dipping listric normal faults, whose geometry is controlled down to 3 km by borehole data. In this paper, we integrate a new interpretation of seismic reflection lines with existing seismic, field, and borehole data to analyse the relations among listric normal faults, the top of the brittle–ductile transition, and the migration of geothermal fluids.In accordance with previous interpretations, we consider the strong reflector (K-horizon) marking the top of the reflective mid-lower crust, and located at a depth of 3–5 km in the geothermal area, to represent the top of the brittle–ductile transition. Its reflectivity most probably derives from the presence of overpressured fluids. We identify three main NW-trending, NE-dipping extensional brittle shear zones, showing listric geometry and soling out in the vicinity of the K-horizon. The latter appears to be dislocated in correspondence of the soling out of the shear zones. These shear zones, because of the associated intense fracturing, represent the most natural channels of upward migration of geothermal fluids from the magmatic sources located below the K-horizon.We suggest that these two conclusions—that listric normal faults root at or near the brittle–ductile transition, and that they act as preferential upward migration paths for magmatic fluids—may be of general validity for geothermal fields located in extensional settings.  相似文献   

17.
La série sédimentaire du Crétacé moyen et supérieur étudiée dans l'Ouest du Bassin de Paris et sur la bordure du Massif armoricain comporte sept pulsations transgressives qui peuvent être reconnues en fonction de la disposition géomètrique des dépôts et de l'enchaînement vertical des faciès.Les épisodes transgressifs atteignent leur phase paroxysmale, en alternance avec des stades de régression, successivement:
1. (1) à la fin de l'Aptien supérieur —(régression début Albien)
2. (2) au milieu de l'Albien supérieur —(régression fin Albien-début Cénomanien)
3. (3) au milieu du Cénomanien inférieur —(régression fin Cénomanien inférieur)
4. (4) à la fin du Cénomanien moyen —(régression fin Cénomanien)
5. (5) au milieu du Turonien inférieur —(régression du Coniacien)
6. (6) au Santonien puis Campanien —(régression fin Campanien)
7. (7) au Maestrichtien —(régression fin Maastrichtien)
Ces dépôts crétacés présentent une succession de séquences séparées par des discontinuités et des surfaces d'érosion plus ou moins marquées. Les caractères et la répartition de ces séquences sont analysés en domaine de sédimentation terrigène littorale et dans le bassin envahi par la craie. Il est alors tenté d'interpréter les variations bathymétriques d'une part en fonction d'évènements tectoniques locaux, d'autre part en relation avec des variations eustatiques plus générales.Middle and Upper Cretaceous deposits studied in the western Paris Basin and on the Armorican Massif margin show seven transgressive pulses that can be detected in the geometrical arrangement of the sedimentary bodies and the vertical succession of facies.The transgressive episodes, each delimited by a regressive phase, reached their peak during:
1. (1) late Late Aptian —(Early Albian regression)
2. (2) mid Late Albian —(Late Albian-Early Cenomanian regression)
3. (3) mid Early Cenomanian —(late Early Cenomanian regression)
4. (4) late Middle Cenomanian —(Late Cenomanian regression)
5. (5) mid Early Turonian —(Coniacian regression)
6. (6) Santonian-Campanian —(Late Campanian regression)
7. (7) Maastrichtian —(Late Maastrichtian regression)
The Cretaceous sediments occur as a series of sequences, separated by more or less important discontinuities and erosion surfaces. The features and distribution of these sequences have been studied in the nearshore region of terrigenous sedimentation and in the Chalk basin. An attempt is made to relate the bathymetric changes to either tectonic movements or more widespread eustatic oscillations.  相似文献   

18.
The K/Ar datings made on recent lavas of northwest Sardinia (Logudoro and Bosano districts) show that the calc-alkaline volcanism lasted about 11 m.y. It began at the Oligocene—Miocene limit and ended in the Middle Miocene.A Plio—Quaternary alkaline volcanic cycle followed the Middle Miocene sea transgression. These geochronological measurements complement a recent paleomagnetic study made on these Sardinian lavas.These data enable us to show that the northwest Sardinian volcanism is subsequent to the island drift. Thus, this movement would have ended in the Late Oligocene at the latest.

Résumé

Les datations K/Ar réalisées sur les laves récentes de Sardaigne nord-occidentale (régions du Logudoro et du Bosano) montrent que le volcanisme calco-alcalin a couvert une période de 11 M.A. environ; il a débuté à la limite Oligocène—Miocène pour s'achever au Miocène moyen. Un cycle volcanique alcalin d'âge plio—quaternaire a succédé à la transgression marine du Miocène moyen. Ces mesures géochronologiques complètent une étude paléomagnétique récente effectuée sur ces laves sardes. Ces données permettent de montrer que le volcanisme de la Sardaigne nord-occidentale est postérieur à la dérive de l'ile; ce mouvement aurait donc pris fin, au plus tard, à l'Oligocène supérieur.  相似文献   

19.
The relationships between the cratonic area and orogenic belts of the southern part of the state of Minas Gerais (Brazil) are analyzed using data from a recent Bouguer anomaly map. The interpretation was carried out using inverse-anomaly approach and statistical analysis. The stable area is characterized by elongate anomalies trending NNE-SSW which correspond to a higher level of the basement under the upper Precambrian sedimentary cover (Bambui and Macaübas groups). They can be related to rejuvenated NNE-SSW-trending fractures.The gravity trends are either deformed or interrupted over the Brasilian fold belt where an important negative linear anomaly is present. This anomaly is produced by a thick sequence of folded sedimentary or metasedimentary terrains which can be interrupted as miogeoclinal units.The Alfenas mobile belt is characterized by a strong positive anomaly, probably associated with heavy infracrustal rock complexes (granulites, charnockites).A crustal thickening, probably associated with a pre-Brazilian continental collision, can be inferred from a long-wavelength linear negative anomaly.

Résumé

Nous présentons une carte des anomalies de Bouguer du Sud de l'Etat de Minas Gerais réalisée à partir des données déjà existantes et d'un levé récent (2000 stations) effectués dans le cadre des accords CNRS-CNPq avec la collaboration de l'ORSTOM et du DNPM*.Lánalyse des anomalies gravimétriques et de leur direction amène à distinguer un domaine cratonique et des zones orogéniques. L'interprétation à l'aide de l'analyse statistique et par problème inverse des anomalies allongées NNE—SSW qui caractérisent la zone stable montre la présence sous la couverture sédimentaire du Précambrian supérieur (groupes Bambui et Macaübas) de zones hautes du socle liées à de grandes fractures anciennes NNE—SSW ayant rejouées à plusieurs époques. On note également des discontinuités NW—SE importantes.Ces directions sont soit déformées, soit brutalement interrompues au niveau des plissement brésiliens auxquels est associée une anomalie négative linéaire importante. Cette anomalie peut être décomposée en une anomalie liée à un sillon de terrains sédimentaires ou métasédimentaires plissés correspondant à des dépôts miogéosynclinaux (Miogéoclinaux) et en une autre de grande longueur d'onde correspondant probablement à un épaississement crustal.Cette structure profonde peut être la conséquence d'une tectonique de collision antébrésilienne contemporaine de la mise en place tectonique des granulites et charnockites de la ceinture mobile Alfenas dont la gravimétrie permet d'apprécier l'importance.  相似文献   

20.
The historical stratotypes of the Aquitanian and Burdigalian in the Aquitaine Basin are studied here by using the tools of facies sedimentology and the concept of sequence stratigraphy. This analytical method combines recognition and sequential organization of facies, and several types of stratigraphic markers. This method allows identification of at least six depositional sequences within the Miocene of the Saucats area: the four lower ones belong to the Aquitanian, the fifth one to the whole Burdigalian, while the sixth sequence corresponds to the Serravallian. In addition, this method provides evidence of a period of emersion before each transgression, suggesting potential fluvial erosion. Nevertheless, these phases are of lower amplitude than those observed in the Rhodano-Provençal Basin.

Résumé

Les stratotypes historiques de l’Aquitanien et du Burdigalien, en Aquitaine, sont étudiés ici en termes de sédimentologie de faciès et de stratigraphie séquentielle. Cette méthode d’analyse combine la reconnaissance et l’organisation séquentielle des faciès à plusieurs types de repères stratigraphiques. Elle permet d’identifier au moins six séquences de dépôt dans le Miocène de la région de Saucats : les quatre premières dans l’Aquitanien, la cinquième pour le Burdigalien et la dernière pour le Serravallien. Elle a également permis de mettre en évidence des phases d’émersion anté-transgression, suggérant de possibles érosions fluviatiles, mais d’ampleurs inférieures à celles reconnues dans le Bassin miocène rhodano-provençal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号