首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Massachusetts Water Resources Authority (MWRA) conducts a comprehensive multidisciplinary monitoring program in Massachusetts Bay, Cape Cod Bay, and Boston Harbor to assess the environmental effects of a relocated secondary-treated effluent outfall. Through 2007, 8.7 years of baseline data and 7.3 years of postdiversion data (16 total years), including species level estimates of phytoplankton and zooplankton abundance, have been collected. MWRA’s monitoring program and other studies make this region one of the most thoroughly studied and well-described marine systems in the world. The data show that the diversion of MWRA effluent from the harbor to the bay has decreased nutrients concentrations and improved water quality in the harbor (e.g., higher dissolved oxygen, lower chlorophyll). The diversion also resulted in an increase in dissolved inorganic nutrients (especially ammonium) in the vicinity of the bay outfall, but no obvious impacts such as increased biomass or decreased bottom water dissolved oxygen have been observed. Regional changes in phytoplankton and zooplankton unrelated to the diversion have been seen, and it is clear that the bays are closely connected both physically and ecologically with the greater Gulf of Maine. Direct responses to modifications of the nutrient field within a 10 × 10-km area centered near the midpoint of the 2-km long outfall diffuser in Massachusetts Bay (a.k.a. the nearfield) have not been seen in the plankton community. However, plankton variability in the bays has been linked to large regional to hemispheric scale (NAO) processes.  相似文献   

2.
Chlorophyll degradation products are preserved in marine sediments over timescales of thousands of years. The production of chlorophyll in the water column is related to biological productivity, so chlorophyll degradation products (chlorins) preserved in marine sediments can be used as indicators of paleoproductivity. A new, rapid, non-destructive method of determining chlorin concentrations in marine sediments is presented. Potential interferences associated with the solid-phase fluorescence (SPF) method are explored using reference materials, yet this method compares favorably with spectroscopic and high performance liquid chromatographic (HPLC) methods of analysis using marine sediments from Boston Harbor and the continental shelf off northwest Africa.  相似文献   

3.
A combination of methods (infaunal grabs and sediment profile cameras) were used to monitor the response of Boston Harbor benthic habitats to reductions in wastewater associated with movement of the outfalls to the mouth of the harbor and then offshore. From 1992 to 2006, there was strong evidence that benthic habitats within Boston Harbor have shifted from a more anaerobic state to a more aerobic state and that these changes are directly related to changes in carbon loading associated with outfall placement and improvements in wastewater treatment. Over the period of 1992 to 2000, when the ocean outfall started to operate, there was >90% reduction in organic loadings to Boston Harbor from 11,400 to 1,200 t C per year. There were also corresponding decreases in primary production due to reduced nutrient loadings. The most apparent change in harbor benthos was the widespread increase in 1992 and subsequent decline by 2005 in Ampelisca spp. tube mats. The long-term increase in thickness of the apparent color redox potential discontinuity layer was consistent with reductions in organic loading and increases in bioturbation. The optimal organic loading for maintaining large areas of amphipod tube mats and high bioturbation rates was around 500 g C per square meter per year. Above and below this level, the area of tube mats in Boston Harbor declined.  相似文献   

4.
Between 1991 and 2000, Boston Harbor, a bay–estuary in the northeast USA, experienced a decrease in loadings of total nitrogen (TN), total phosphorus (TP), and particulate organic carbon (PC) of between ∼80% and ∼90%. The average concentrations of TN and TP in the harbor water column were decreased in linear proportion to the loadings. The changes to the chlorophyll-a (chl-a), PC, and bottom water DO concentrations were curvilinear relative to the loadings, with larger changes at low than high loadings. For TN and TP, the starts of the decreases in concentrations coincided with the starts of the decreases in loadings. For the three variables that showed curvilinear responses, the starts of the changes lagged by 2 to 3 years the starts of the decreases in TN loadings. Total suspended solid concentrations and water clarity in the harbor were unchanged. The study shows that for systems such as Boston Harbor, decreases in nutrient loadings will have quite different effects depending on the base loadings to the system.  相似文献   

5.
A deterministic, mass balance model for phytoplankton, nutrients, and dissolved oxygen was applied to the Mississippi River Plume/Inner Gulf Shelf (MRP/IGS) region. The model was calibrated to a comprehensive set of field data collected during July 1990 at over 200 sampling stations in the northern Gulf of Mexico. The spatial domain of the model is represented by a three-dimensional, 21-segment water-column grid extending from the Mississippi River Delta west to the Louisiana-Texas border, and from the shoreline seaward to the 30–60 m bathymetric contours. Diagnostic analyses and numerical experiments were conducted with the calibrated model to better understand the environmental processes controlling primary productivity and dissolved oxygen dynamics in the MRP/IGS region. Underwater light attenuation appears relatively more important than nutrient limitation in controlling rates of primary productivity. Chemical-biological processes appear relatively more important than advective-dispersive transport processes in controlling bottom-water dissolved oxygen dynamics. Oxidation of carbonaceous material in the water column, phytoplankton respiration, and sediment oxygen demand all appear to contribute significantly to total oxygen depletion rates in bottom waters. The estimated contribution of sediment oxygen demand to total oxygen-depletion rates in bottom waters ranges from 22% to 30%. Primary productivity appears to be an important source of dissolved oxygen to bottom waters in the region of the Atchafalaya River discharge and further west along the Louisiana Inner Shelf. Dissolved oxygen concentrations appear very sensitive to changes in underwater light attenuation due to strong coupling between dissolved oxygen and primary productivity in bottom waters. The Louisiana Inner Shelf in the area of the Atchafalaya River discharge and further west to the Texas border appears to be characterized by significantly different light attenuation-depth-primary productivity relationships than the area immediately west of the Mississippi Delta. Nutrient remineralization in the water column appears to contribute significantly to maintaining chlorophyll concentrations on the Louisiana Inner Shelf.  相似文献   

6.
The Sulu Sea, located between Borneo and the Philippines, is separated from the surrounding ocean by two chains of islands. There are no passages below 500 m depth and the basin, which at the deepest is 5,000m, is filled with warm low oxygen water. The near surface chlorophyll concentration has been examined with the aid of ocean colour sensors on board satellites. Direct comparisons between a field observation of chlorophyll and its remotely sensed values from OCTS (Ocean Colour Temperature Scanner) are found to be in satisfactory agreement. An 8-month time series of chlorophyll near the centre of the Sulu Sea has been used to show that the chlorophyll level is significantly higher than the level in the adjacent South China Sea. This was most pronounced at the period of change between the monsoons. The greater primary productivity may provide the explanation for the higher deposition rate of carbon in the Sulu Sea. Although the Sulu Sea is more productive than the adjacent South China Sea, the central area can still be classified as a desert. Estimates of the new primary production in the central Sulu Sea seem to be just sufficient to support the current fishery.  相似文献   

7.
The chemical composition of interstitial waters from several inland seas and or water system (NPWS) exposed to anthropogenic pollution was studied. The patterns of the distribution of pollution in the Dnieper–Bug Estuary, Gelendzhik Bay of the Black Sea and in the Alexandria’s Eastern Harbor of the Mediterranean Sea were found. Most of the contamination occurs in the upper layers of bottom sediments and near mouth zones. A significant role is played by secondary contamination related to the dissolution and accumulation of metals and nutrients in the interstitial water and their migration to the water column. The estuary factor of anthropogenic pollution takes center stage according to a factor analysis for the combined impacts of potentially mobile forms of metals in the Dnieper–Bug Estuary. Studies of the Lake Pyasino pollution near Noril’sk were carried out.  相似文献   

8.
Sediment denitrification is a microbial process that converts dissolved inorganic nitrogen in sediment porewaters to N2 gas, which is subsequently lost to the atmosphere. In coastal waters, it represents a potentially important loss pathway for fixed nitrogen which might otherwise be available to primary producers. Currently, data are lacking to adequately assess the role of denitrification in reducing or remediating the effects of large anthropogenic nitrogen loads to the coastal zone. This study describes the results of 88 individual measurements of denitrification (as a direct flux of N2 gas) in sediment cores taken over a 3-yr period (1991–1994) from six stations in Boston Harbor, nine stations in Massachusetts Bay, and two stations in Cape Cod Bay. The dataset is unique in its extensive spatial and temporal coverage and includes the first direct measurements of denitrification for North Atlantic shelf sediments. Results showed that rates of denitrification were significantly higher in Boston Harbor (mean=54, range<5–206 μmol N2 m?2 h?1) than in Massachusetts Bay (mean=23, range<5–64 μmol N2 m?2 h?1). Highest rates occurred in areas with organic-rich sediments in the harbor, with slower rates observed for low-organic sandy sediments in the harbor and at shallow shelf stations in the bay. Lowest rates were found at the deepest shelf stations, located in Stellwagen Basin in Massachusetts Bay. Observed rates were correlated with temperature, sediment carbon content, and benthic macrofaunal activity. Seasonally, highest denitrification rates occurred in the summer in Boston Harbor and in the spring and fall in Massachusetts Bay, coincident with peak phytoplankton blooms in the overlying water column. Despite the fact that sediment denitrification rates were high relative to rates reported for other East Coast estuaries, denitrification losses accounted for only 8% of the annual total nitrogen load to Boston Harbor, a consequence perhaps, of the short water-residence times (2–10 d) of the harbor.  相似文献   

9.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   

10.
Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts   总被引:1,自引:0,他引:1  
To gain insight into the importance of the benthos in carbon and nutrient budgets of Boston Harbor and surrounding bays, we measured sediment-water exchanges of oxygen, total carbon dioxide (DIC), nitrogen (ammonium, nitrate+nitrite, urea, N2O), silicate, and phosphorus at several stations in different sedimentary environments just prior to and subsequent to cessation of sewage sludge disposal in the harbor. The ratio of the average annual DIC release to O2 uptake at three primary stations ranged from 0.84 to 1.99. Annual average DIC:DIN flux ratios were consistently greater than predicted from the Redfield ratio, suggesting substantial losses of mineralized N. The pattern was less clear for P: some stations showed evidence that the sediments were a sink for P while others appeared to be a net source to the water column over the study period. In general, temporal and spatial patterns of respiration, nutrient fluxes, and flux ratios were not consistently related to measures of sediment oxidation-reduction status such as Eh or dissolved sulfide. Sediments from Boston Harbor metabolize a relatively high percentage (46%) of the organic matter inputs from phytoplankton production and allochthonous inputs when compared to most estuarine systems. Nutrient regeneration from the benthos is equivalent to 40% of the N, 29% of the P, and more than 60% of the Si demand of the phytoplankton. However, the role of the benthos in supporting primary production at the present time may be minor as nutrient inputs from sewage and other sources exceed benthic fluxes of N and P by 10-fold and Si by 4-fold. Our estimates of denitrification from DIC:DIN fluxes suggests that about 45% of the N mineralized in the sediments is denitrified, which accounts for about 17% of the N inputs from land.  相似文献   

11.
Hydrography of the eastern Arabian Sea and associated chemical and biological responses were studied during the withdrawal phase of summer monsoon 2003. The shelf region off the southwest coast of India (10°N–15°N) continued to exhibit upwelling of colder (<28.5 °C), nutrient rich (nitrate >2.0 μM, phosphate >0.8 μM, silicate >4.0 μM) and relatively low oxygenated waters (~180 μM). The vertical advection of nutrients, coupled with anthropogenic terrestrial inputs, enhanced the levels of chlorophyll and primary productivity near the coastal margin off Cochin. The influence of both natural and anthropogenic nutrient loadings on the coastal system of the western continental shelf of India leads to eutrophication and hypoxia with negative impacts on the environment in general and fisheries in particular.  相似文献   

12.
In a 3-yr study, late prespawning winter flounder were collected from various stations in Long Island Sound (three of them heavily urbanized) and spawned in the laboratory. For comparative purposes, flounder from two sites in the Boston Harbor area were similarly treated in 1987 and 1988. Of the stations in Long Island Sound, New Haven Harbor alone consistently produced low percent viable hatch and small larvae. Boston Harbor produced the smallest larvae of all sites. There were no significant station-to-station differences in lipid utilization during larval development; yolk reserves at stations showing a low percent viable hatch, small larvae, and low embryonic development rate were probably used in part for stress metabolism. No significant differences in concentrations of polychlorinated biphenyls for collections from Long Island Sound were found either in livers of spawned fish, in sediments, or in eggs of winter flounder. The very low metal concentrations in winter flounder eggs showed no relation to the degree of metal contamination found at stations in Long Island Sound and Boston Harbor.  相似文献   

13.
A combination of field studies and mathematical modeling was used to examine the role of subtidal benthic algae in the eutrophication processes in two shallow estuarine systems. Field measurements indicated uptake by benthic algae retained ammonium and phosphate in the sediments when light at the sediment surface exceeded ≈150 μE m2 s?1. The measurements were used to calibrate a newly developed model of benthic algal activity. The benthic algal model was coupled with a hydrodynamic model, a eutrophication model, and a sediment diagenesis model. In the simulated ecosystem, benthic algae had a major influence in the intra-annual cycling of nitrogen and phosphorus. When nutrients were abundant in the water column (late winter and spring) they were transferred to the sediments through algal activity. Diagenesis released these nutrients to the water column in summer when nutrients were scarce. As a result of the nutrient transfer, annual primary production in the water column, in the presence of benthic algae, exceeded production in the absence of the algae.  相似文献   

14.
Jiang, S., Liu, X., Sun, J., Yuan, L., Sun, L. & Wang, Y. 2011: A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard. Boreas, Vol. 40, pp. 468–480. 10.1111/j.1502‐3885.2010.00198.x. ISSN 0300‐9483 The Arctic constitutes a unique and important environment with a significant role in the dynamics and evolution of the earth system. Arctic lake sediments, which accumulate slowly over time, contain abundant information about the biological communities that lived within the water body, as well as in the surrounding catchment. In this study, we collected a sediment core from Ny‐Ålesund, Svalbard, performed multi‐proxy analyses on sediment pigments, mineral magnetic susceptibility, various sediment quality (i. e. organic matter content, CaCO3 content, carbon and nitrogen isotope), and diatom composition, and reconstructed the history of ecosystem responses to environmental variations, especially regarding aquatic productivity and lake catchment surface processes. Ny‐Ålesund has undergone distinct ecological and climatic changes. During the Little Ice Age, the cold climate was unfavourable for the growth of lake algae, and therefore the lake primary productivity declined. After about AD 1890 and during the 20th century, the warming climate and reduced ice cover led to rapid lithological change and growth of lake algae, enhanced lake primary productivity, and increased input of nutrients derived from increased chemical weathering into the lake. The lake ecosystem on Ny‐Ålesund has had rapid responses to climatic and environmental changes in the Arctic.  相似文献   

15.
Surveys were conducted in April and June 1995 to quantify the uptake of dissolved nutrients in a highly turbid estuary (the Humber, United Kingdom) and to determine the factors controlling nutrient uptake rates. A combination of isotope labelling methods were used in conjunction with on-deck incubation techniques to estimate the uptake of dissolved nutrients (PO4 3?, NH4 +, NO3 ?, and urea) in surface samples collected from coastal waters. Similarly, isotope labelling and laboratory incubgation techniques were employed to estimate dissolved nitrogen uptake (NH4 +, NO3 ?, and urea) in surface samples collected from the estuary mouth. Nutrient uptake rates were at the low end of ranges for coastal and estuarine environments reported in the literature. Concentrations of chlorophyll and the availability of photosynthetically active radiation were identified as potentially important factors controlling the uptake rates of nutrients. Uptake rates of dissolved nitrogen in the Humber mouth appeared to be related to the location of smapling sites. Depletion rates of dissolved nutrients in situ were estimated on the basis of integrated water column nutrient uptake rates and indicated assimilation of up to 16% of nutrients in the entire water column. Estimated depletion rates did not indicate preferential loss of any of the nutrient species investigated.  相似文献   

16.
The water column concentration and bioaccumulation of the polychlorinated biphenyl (PCB) congener CB052 was modeled in New Bedford Harbor, Massachusetts, using site-specific hydrodynamics and loading information. Equilibrium partitioning theory was used to estimate interstitial water CB052 concentrations from sediment concentrations in New Bedford Harbor and Buzzards Bay, Massachusetts. The rate of CB052 vertical flux from the interstitial water to the overlying water column was calculated by multiplying the vertical concentration gradient at the sedimentwater interface by a flux coefficient. The vertical flux coefficient and the flux rate from model-generated water-column concentrations were calculated using an interative procedure. Movement of CB052 within New Bedford Harbor was simulated using calibrated two-dimensional, vertically-integrated, finite element hydrodynamic and transport models. Quasi-steady-state water column concentrations and a field-derived bioconcentration factor were used to predict the expected concentration of CB052 in blue mussels (Mytilus edulis) at two stations in New Bedford Harbor. The model was used to predict the effects of two remedial scenarios (i.e., reducing average sediment total PCB concentrations to 50 ppm or 10 ppm) on concentrations of CB052 in water and blue mussel tissue. Based on the model results, the CB052 concentration in blue mussels would be reduced by 33–53% for the 50 ppm option and by 67–84% for the 10 ppm option.  相似文献   

17.
Subtropical estuaries have received comparatively little attention in the study of nutrient loading and subsequent nutrient processing relative to temperate estuaries. Australian estuaries are particularly susceptible to increased nutrient loading and eutrophication, as 75% of the population resides within 200 km of the coastline. We assessed the factors potentially limiting both biomass and production in one Australian estuary, Moreton Bay, through stoichiometric comparisons of nitrogen (N), phosphorus (P), silicon (Si), and carbon (C) concentrations, particulate compositions, and rates of uptake. Samples were collected over 3 seasons in 1997–1998 at stations located throughout the bay system, including one riverine endmember site. Concentrations of all dissolved nutrients, as well as particulate nutrients and chlorophyll, declined 10-fold to 100-fold from the impacted western embayments to the eastern, more oceanic-influenced regions of the bay during all seasons. For all seasons and all regions, both the dissolved nutrients and particulate biomass yielded N:P ratios <6 and N:Si ratios <1. Both relationships suggest strong limitation of biomass by N throughout the bay. Limitation of rates of nutrient uptake and productivity were more complex. Low C:N and C:P uptake ratios at the riverine site suggested light limitation at all seasons, low N:P ratios suggested some degree of N limitation and high N:Si uptake ratios in austral winter suggested Si limitation of uptake during that season only. No evidence of P limitation of biomass or productivity was evident.  相似文献   

18.
Phytoplankton nutrient limitation experiments were performed from 1994 to 1996 at three stations in the Cape Fear River Estuary, a riverine system originating in the North Carolina piedmont. Nutrient addition bioassays were conducted by spiking triplicate cubitainers with various nutrient combinations and determining algal response by analyzing chlorophyll a production and 14C uptake daily for 3 d. Ambient chlorophyll a, nutrient concentration, and associated physical data were collected throughout the estuary as well. At a turbid, nutrient-rich oligohaline station, significant responses to nutrient additions were rare, with light the likely principal factor limiting phytoplankton production. During summer at a mesohaline station, phytoplankton community displayed significant nitrogen (N) limitation, while both phosphorus (P) and N were occasionally limiting in spring with some N+P co-limitation. Light was apparently limiting during fall and winter when the water was turid and nutrient-rich, as well as during other months of heavy rainfall and runoff. A polyhaline station in the lower estuary had clearer water and displayed significant responses to nutrient additions during all enrichment experiments. At this site N limitation occurred in summer and fall, and P limitation (with strong N+P co-limitation) occurred in winter and spring. The data suggest there are two patterns controlling phytoplankton productivity in the Cape Fear system: 1) a longitudinal pattern of decreasing light limitation and increasing nutrient sensitivity along the salinity gradient, and 2) a seasonal alternation of N limitation, light limitation, and P limitation in the middle-to-lower estuary. Statistical analyses indicated upper watershed precipitation events led to increased flow, turbidity, light attenuation, and nutrient loading, and decreased chlorophyll a and nutrient limitation potential in the estuary. Periods of low rainfall and river flow led to reduced estuarine turbidity, higher chlorophyll a, lower ambient nutrients, and more pronounced nutrient limitation.  相似文献   

19.
Longitudinal variation in factors affecting phytoplankton production were analyzed to better understand the mechanisms that cause the formation of a chlorophyll maximum within the tidal freshwater James River. Phytoplankton production was two- to threefold higher in the region where persistent elevated chlorophyll concentrations occurred. Near this site, the morphology of the James transitions from a narrow, deep channel to a broad expanse with shallow areas adjoining the main channel. Shallower depths resulted in greater average irradiance within the water column and suggest that release from light limitation was the principal factor accounting for the location of the chlorophyll maximum. Grazing rates were low indicating that little of the algal production was directly consumed by zooplankton. Low exploitation by zooplankton was attributed to poor food quality due to high concentrations of non-algal particulate matter and potential presence of cyanobacteria. Metabolism data suggest that two thirds of net primary production was respired in the vicinity of the chlorophyll maximum and one third was exported via fluvial and tidal advection. Comparison of water column and ecosystem metabolism indicates that the bulk of respiration occurred within the sediments and that sedimentation was the dominant loss process for phytoplankton.  相似文献   

20.
From a watershed perspective, Boston Harbor, MA, USA is an ideal site for eelgrass restoration due to major wastewater improvements. Therefore, by focusing on site selection and transplant methods, high survival and expansion rates were recorded at four large eelgrass-restoration sites planted in Boston Harbor as partial mitigation for a pipeline construction project. Transplanted sites met and exceeded reference and donor bed habitat function after 2 years. Hand planting and seeding in checkerboard-patterned transplant plots were efficient and effective methods for jump-starting eelgrass growth over large areas. Although restoration through planting can be successful, it is highly site specific. Even using a published site-selection model, intensive fieldwork was required to identify sites at fine enough scale to ensure successful planting. Given the effort required to identify scarce potential sites, we recommend that future focus includes alternative mitigation strategies that can more adequately prevent eelgrass loss and address water quality degradation which is the leading cause of dieback, site unsuitability for planting, and lack of natural re-colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号