首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate a number of potential foregrounds for an ambitious goal of future radio telescopes such as the Square Kilometer Array (SKA) and the Low Frequency Array (LOFAR): spatial tomography of neutral gas at high redshift in 21-cm emission. While the expected temperature fluctuations due to unresolved radio point sources is highly uncertain, we point out that free–free emission from the ionizing haloes that reionized the Universe should define a minimal bound. This emission is likely to swamp the expected brightness temperature fluctuations, making proposed detections of the angular patchwork of 21-cm emission across the sky unlikely to be viable. Hα observations with JWST could place an upper bound on the contribution of high-redshift sources to the free–free background. An alternative approach is to discern the topology of reionization from spectral features due to 21-cm emission along a pencil-beam slice. This requires tight control of the frequency-dependence of the beam in order to prevent foreground sources from contributing excessive variance. We also investigate potential contamination by galactic and extragalactic radio recombination lines (RRLs). These are unlikely to be show-stoppers, although little is known about the distribution of RRLs away from the Galactic plane. The mini-halo emission signal is always less than that of the intergalactic medium (IGM), making mini-haloes unlikely to be detectable. If they are seen, it will be only in the very earliest stages of structure formation at high redshift, when the spin temperature of the IGM has not yet decoupled from the cosmic microwave background.  相似文献   

2.
Studying the cosmic dawn and the epoch of reionization through the redshifted 21-cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the Universe. Interpreting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21-cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.  相似文献   

3.
The 21-cm forest     
We examine the prospects for studying the pre-reionization intergalactic medium (IGM) through the so-called 21-cm forest in spectra of bright high-redshift radio sources. We first compute the evolution of the mean optical depth τ for models that include X-ray heating of the IGM gas, Wouthuysen–Field coupling, and reionization. Under most circumstances, the spin temperature T S grows large well before reionization begins in earnest; this occurs so long as the X-ray luminosity of high-redshift starbursts (per unit star formation rate) is comparable to that in nearby galaxies. As a result,  τ≲ 10−3  throughout most of reionization, and background sources must sit well beyond the reionization surface in order to experience absorption that is measurable by square-kilometre class telescopes. H  ii regions produce relatively large 'transmission gaps' and may therefore still be observable during the early stages of reionization. Absorption from sheets and filaments in the cosmic web fades once T S becomes large and should be rare during reionization. Minihaloes can produce strong (albeit narrow) absorption features. Measuring their abundance would yield useful limits on the strength of feedback processes in the IGM as well as their effect on reionization.  相似文献   

4.
The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H  ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at   z ∼ 6  ). We argue that while quasars at   z < 6.5  seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at   z ∼ 6  is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array.  相似文献   

5.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

6.
Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signals: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that the SKA1-low should be able to detect ionized bubbles of radius \(R_{\mathrm {b}} \gtrsim 10\) Mpc with ~100 h of observations at redshift z~8 provided that the mean outside neutral hydrogen fraction \(\mathrm {x}_{\text {HI}} \gtrsim 0.5\). We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. (Nature 474, 7353 (2011)). We find that a 5σ detection is possible with 600 h of SKA1-low observations if the QSO age and the outside xHI are at least ~2×107 Myr and ~0.2 respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly- α sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total ~ 1000 h of observations, SKA1-low should be able to detect those sources individually with a ~ 9σ significance at redshift z=15. We summarize how the SNR changes with various parameters related to the source properties.  相似文献   

7.
Detecting redshifted 21-cm emission from neutral hydrogen in the early Universe promises to give direct constraints on the epoch of reionization (EoR). It will, though, be very challenging to extract the cosmological signal (CS) from foregrounds and noise which are orders of magnitude larger. Fortunately, the signal has some characteristics which differentiate it from the foregrounds and noise, and we suggest that using the correct statistics may tease out signatures of reionization. We generate mock data cubes simulating the output of the Low Frequency Array (LOFAR) EoR experiment. These cubes combine realistic models for Galactic and extragalactic foregrounds and the noise with three different simulations of the CS. We fit out the foregrounds, which are smooth in the frequency direction, to produce residual images in each frequency band. We denoise these images and study the skewness of the one-point distribution in the images as a function of frequency. We find that, under sufficiently optimistic assumptions, we can recover the main features of the redshift evolution of the skewness in the 21-cm signal. We argue that some of these features – such as a dip at the onset of reionization, followed by a rise towards its later stages – may be generic, and give us a promising route to a statistical detection of reionization.  相似文献   

8.
We investigate the impact of neutral hydrogen (H  i ) in galaxies on the statistics of 21-cm fluctuations using seminumerical modelling. Following the reionization of hydrogen, the H  i content of the Universe is dominated by damped absorption systems (DLAs), with a cosmic density in H  i that is observed to be constant at a level equal to ∼2 per cent of the cosmic baryon density from   z ∼ 1  to   z ∼ 5  . We show that extrapolation of this constant fraction into the reionization epoch results in a reduction in the amplitude of 21-cm fluctuations over a range of spatial scales. We further find that consideration of H  i in galaxies/DLAs reduces the prominence of the H  ii region induced shoulder in the 21-cm power spectrum (PS), and hence modifies the scale dependence of 21-cm fluctuations. We also estimate the 21-cm–galaxy cross PS and show that the cross PS changes sign on scales corresponding to the H  ii regions. From consideration of the sensitivity for forthcoming low-frequency arrays, we find that the effects of H  i in galaxies/DLAs on the statistics of 21-cm fluctuations will be significant with respect to the precision of a PS or cross PS measurement. In addition, since overdense regions are reionized first we demonstrate that the cross-correlation between galaxies and 21-cm emission changes sign at the end of the reionization era, providing an alternative avenue to pinpoint the end of reionization. The sum of our analysis indicates that the H  i content of the galaxies that reionize the universe will need to be considered in detailed modelling of the 21-cm intensity PS in order to correctly interpret measurements from forthcoming low-frequency arrays.  相似文献   

9.
Spatial dependence in the statistics of redshifted 21-cm fluctuations promises to provide the most powerful probe of the reionization epoch. In this paper we consider the second and third moments of the redshifted 21-cm intensity distribution using a simple model that accounts for galaxy bias during the reionization process. We demonstrate that skewness in redshifted 21-cm maps should be substantial throughout the reionization epoch and on all angular scales, owing to the effects of galaxy bias which leads to early reionization in overdense regions of the intergalactic medium (IGM). The variance (or power spectrum) of 21-cm fluctuations will exhibit a minimum in redshift part way through the reionization process, when the global ionization fraction is around 50 per cent. This minimum is generic, and is due to the transition from 21-cm intensity being dominated by overdense to underdense regions as reionization progresses. We show that the details of the reionization history, including the presence of radiative feedback are encoded in the evolution of the autocorrelation and skewness functions with redshift and mean IGM neutral fraction. The amplitudes of fluctuations are particularly sensitive to the masses of ionizing sources, and vary by an order of magnitude for astrophysically plausible models. We discuss the detection of skewness by first-generation instruments, and conclude that the Mileura Wide-field Array–Low-Frequency Demonstrator will have sufficient sensitivity to detect skewness on a range of angular scales at redshifts near the end of reionization, while a subsequent instrument of 10 times the collecting area could map out the evolution of skewness in detail. The observation of a minimum in variance during the reionization history, and the detection of skewness would both provide important confirmation of the cosmological origin of redshifted 21-cm intensity fluctuations.  相似文献   

10.
Reionization is thought to be dominated by low-mass galaxies, while direct observations of resolved galaxies probe only the most massive, rarest objects. The cross-correlation between fluctuations in the surface brightness of the cumulative Lyα emission (which serves as a proxy for the star formation rate) and the redshifted 21-cm signal from neutral hydrogen in the intergalactic medium (IGM) will directly probe the causal link between the production of ionizing photons in galaxies and the reionization of the IGM. We discuss the prospects for detecting this cross-correlation for unresolved galaxies. We find that on angular scales ≲10 arcmin detection will be practical using wide-field near-infrared (near-IR) imaging from space in combination with the forthcoming Mileura Wide-field Array – Low Frequency Demonstrator. When redshifted 21-cm observations of the neutral IGM are combined with space-based near-IR imaging of Lyα emission, the detection on angular scales ≲3 arcmin will be limited by the sensitivity of the 21-cm signal, even when a small-aperture optical telescope (∼2 m) and a moderate field of view (∼10 deg2) are used. On scales ≳3 arcmin, the measurement of cross-correlation will be limited by the accuracy of the foreground sky subtraction.  相似文献   

11.
We discuss the prospects of using the redshifted 21-cm emission from neutral hydrogen in the post-reionization epoch to study our Universe. The main aim of the article is to highlight the efforts of Indian scientists in this area with the SKA in mind. It turns out that the intensity mapping surveys from SKA can be instrumental in obtaining tighter constraints on the dark energy models. Cross-correlation of the HI intensity maps with the Ly α forest data can also be useful in measuring the BAO scale.  相似文献   

12.
Many models of early structure formation predict a period of heating immediately preceding reionization, when X-rays raise the gas temperature above that of the cosmic microwave background. These X-rays are often assumed to heat the intergalactic medium (IGM) uniformly, but in reality will heat the gas more strongly closer to the sources. We develop a framework for calculating fluctuations in the 21-cm brightness temperature that originate from this spatial variation in the heating rate. High-redshift sources are highly clustered, leading to significant gas temperature fluctuations (with fractional variations ∼40 per cent, peaking on   k ∼ 0.1 Mpc−1  scales). This induces a distinctive peak-trough structure in the angle-averaged 21-cm power spectrum, which may be accessible to the proposed Square Kilometre Array. This signal reaches the ∼10 mK level, and is stronger than that induced by Lyα flux fluctuations. As well as probing the thermal evolution of the IGM before reionization, this 21-cm signal contains information about the spectra of the first X-ray sources. Finally, we consider disentangling temperature, density and Lyα flux fluctuations as functions of redshift.  相似文献   

13.
Of the many probes of reionization, the 21-cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21-cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large-scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross-correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked towards the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (ℓ∼ 100) and comes almost entirely from large physical scales ( k ∼ 10−2 Mpc). Since many of the foregrounds and noise that plague low-frequency radio observations will not correlate with CMB measurements, the cross-correlation might appear to provide a robust diagnostic of the cosmological origin of the 21-cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.  相似文献   

14.
The line-of-sight direction in the redshifted 21-cm signal coming from the cosmic dawn and the epoch of reionization is quite unique in many ways compared to any other cosmological signal. Different unique effects, such as the evolution history of the signal, non-linear peculiar velocities of the matter etc. will imprint their signature along the line-of-sight axis of the observed signal. One of the major goals of the future SKA-LOW radio interferometer is to observe the cosmic dawn and the epoch of reionization through this 21-cm signal. It is thus important to understand how these various effects affect the signal for its actual detection and proper interpretation. For more than one and half decades, various groups in India have been actively trying to understand and quantify the different line-of-sight effects that are present in this signal through analytical models and simulations. In many ways the importance of this sub-field under 21-cm cosmology have been identified, highlighted and pushed forward by the Indian community. In this article, we briefly describe their contribution and implication of these effects in the context of the future surveys of the cosmic dawn and the epoch of reionization that will be conducted by the SKA-LOW.  相似文献   

15.
21-cm emission from neutral hydrogen during and before the epoch of cosmic reionization is gravitationally lensed by material at all lower redshifts. Low-frequency radio observations of this emission can be used to reconstruct the projected mass distribution of foreground material, both light and dark. We compare the potential imaging capabilities of such 21-cm lensing with those of future galaxy lensing surveys. We use the Millennium Simulation to simulate large-area maps of the lensing convergence with the noise, resolution and redshift-weighting achievable with a variety of idealized observation programmes. We find that the signal-to-noise ratio of 21-cm lens maps can far exceed that of any map made using galaxy lensing. If the irreducible noise limit can be reached with a sufficiently large radio telescope, the projected convergence map provides a high-fidelity image of the true matter distribution, allowing the dark matter haloes of individual galaxies to be viewed directly, and giving a wealth of statistical and morphological information about the relative distributions of mass and light. For instrumental designs like that planned for the Square Kilometre Array, high-fidelity mass imaging may be possible near the resolution limit of the core array of the telescope.  相似文献   

16.
Recent results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite suggest that the intergalactic medium (IGM) was significantly reionized at redshifts as high as   z ∼ 17  . At this early epoch, the first ionizing sources probably appeared in the shallow potential wells of mini-haloes with virial temperatures   T vir < 104 K  . Once such an ionizing source turns off, its surrounding H ii region Compton cools and recombines. None the less, we show that the 'fossil' H ii regions left behind remain at high adiabats, prohibiting gas accretion and cooling in subsequent generations of mini-haloes. This greatly amplifies feedback effects explored in previous studies, and early star formation is self-limiting. We quantify this effect to show that star formation in mini-haloes cannot account for the bulk of the electron scattering opacity measured by WMAP , which must be due to more massive objects. We argue that gas entropy, rather than IGM metallicity, regulates the evolution of the global ionizing emissivity and impedes full reionization until lower redshifts. We discuss several important consequences of this early entropy floor for reionization. It reduces gas clumping, curtailing the required photon budget for reionization. An entropy floor also prevents H2 formation and cooling, due to reduced gas densities: it greatly enhances feedback from ultraviolet photodissociation of H2. An early X-ray background would also furnish an entropy floor to the entire IGM; thus, X-rays impede rather than enhance H2 formation. Future 21-cm observations may probe the topology of fossil H ii regions.  相似文献   

17.
We show that near-infrared observations of the red side of the Lyα line from a single gamma-ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM),     , at the GRB's redshift to better than     . Some GRB sightlines will encounter more neutral hydrogen than others at fixed     owing to the patchiness of reionization. GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on     from the   z = 6.3  burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise ratio similar to the Subaru FOCAS spectrum of GRB050904 and that the column density distribution of damped Lyα absorbers is the same as measured at lower redshifts, a GRB from an epoch when     can be used to detect a partly neutral IGM at 97 per cent confidence level ≈10 per cent of the time (and, for an observation with three times the sensitivity, ≈30 per cent of the time).  相似文献   

18.
We study the statistical properties of the cosmological 21-cm signal from both the intergalactic medium (IGM) and minihaloes, using a reionization simulation that includes a self-consistent treatment of minihalo photoevaporation. We consider two models for minihalo formation and three typical thermal states of the IGM – heating purely by ionization, heating from both ionizing and Lyα photons and a maximal 'strong heating' model. We find that the signal from the IGM is almost always dominant over that from minihaloes. In our calculation, the differential brightness temperature,  δ T b,  of minihaloes is never larger than 2 mK. Although there are indeed some differences in the signals from the minihaloes and from the IGM, even with the planned generation of radio telescopes it will be unfeasible to detect them. However, minihaloes significantly affect the ionization state of the IGM and the corresponding 21-cm flux.  相似文献   

19.
20.
Elias Brinks   《New Astronomy Reviews》2004,48(11-12):1305
The SKA will revolutionise the study of the principles underlying star formation (SF), resolving interstellar cloud complexes which are the birthplaces of stars and answering such questions as which are the sufficient and necessary conditions for SF to commence. Also, massive SF is intimately related to stellar death. The SKA will be able to study the structure of the ISM at 100 pc resolution out to distances of up to 20 Mpc and will quantify the impact the demise of massive stars has on their environment. Importantly, the SKA will probe the transition region between ISM and IGM, linking star formation and stellar death in the disks of galaxies to faint HI structures further afield, such as “anomalous gas” and (Compact) High Velocity Clouds. Lastly, the superb sensitivity of the SKA will result in some hundred background sources per square degree against which HI absorption lines can be searched for, probing not only the relative importance of the different phases of the gas in galaxies but also the low density gas in the outskirts and between galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号