首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 928 毫秒
1.
In this paper we investigate both the global and the local hydrodynamics of axisymmetric accretion disks around young stellar objects under the simultaneous action of viscosity, self-gravity and pressure forces. For simplicity, we take for the global model a polytropic equation of state, make the infinitely thin disk approximation and characterize the surface density and temperature profiles in the disk as power laws in the radial distance r from the protostar. We solve the problem of the general density profile of a Keplerian disk showing that self-gravity could not be an important factor for the fast formation of the rocky cores of giant gaseous planets in our solar system. Under the hypothesis that the unperturbed rotation curve of the disk is nearly Keplerian throughout the radial extent, we can estimate with our polytropic model a lower limit for the resulting masses Md(r) of stable disks up to 100 AU. These masses are in the range of the so-called minimum mass solar nebular (d/Ms ≈ 0.01–0.02).By adopting a simplified viscosity model, where the height-integrated turbulent dynamical viscosity ν is a function of the surface density σ like η ∝ σΓ, we derive in the local shearing sheet model linearized evolution equations for small density perturbations describing both a diffusion process and the propagation of acoustic density waves. We solve a special initial value problem and calculate the appropriate Green's function. The analytical solutions so obtained describe in the case Γ < 0 the successive formation of quasi-stationary ring-shaped density structures in a disk with a definite mode of maximum instability, whereas in the case Γ > Γc the density wave equation describes the propagation of an “overstable” ring-shaped acoustic density wavelet to the outer ranges of the accretion disk. Whereas the group velocity of the wave packet is subsonic, the phase velocities of individual wave crests in the wave packet are supersonic. The mode of maximum instability, the growth rate and the number of growing waves in the wavelet are controlled by Γ and α. Our present knowledge concerning turbulent viscosity in protoplanetary disks is not sufficient to decide whether or not the case Γ > Γc is realized.The suggested structuring processes in the linear theory should initiate in the non-linear regime the formation of narrow ring-shaped density shock waves moving through the protoplanetary disk. These non-linear waves could produce extremely spatially and temporally heterogeneous temperature regions in the disk. We speculate that ring-shaped density waves, excited by inner boundary conditions and which have dominated the disk's evolution at early times, are responsible both for the fast growth of dust to planetesimals and at least for the rapid accretion of the rocky cores of giant gaseous planets in the protoplanetary accretion disk (shock wave trigger hypothesis). We derive provisional scaling rules for planetary systems regarding the spacing of orbits as a function of the mass ratio of the protoplanetary disk to the protostar. However, further analytical work and linear as well as nonlinear numerical simulations of density waves excited by inner boundary conditions are needed to consolidate the results and speculations of our linear wave mechanics in the future.  相似文献   

2.
The aim of the present paper has been to investigate quantitative aspects of the phenomenon of tidal lag in close binary systems, the components of which rotate (in a direct or retrograde sense) in periods which differ from that of orbital revolution. The components constituting the binary are regarded as self-gravitating configurations, consisting of viscous compressible fluid, the viscosity of which varies with the 2.5th power of local temperature (indicated by theoretical investigations of the viscosity of hydrogen plasma). The equilibrium structure of the components has been assumed to be polytropic of indexn; and numerical computations were carried out for the values ofn=1.5, 2.5, 3.5, and 4.5. The magnitudes of the tidal lag /2 – i for these models and for different values of the ratio of the angular velocities of rotation and revolution are listed in Tables III–XLII in terms of six values of a non-dimensional parameterZ which is proportional to viscosity.  相似文献   

3.
An exact analysis of Stokes' problem for an infinite vertical plate, whose temperature varies linearly with time, has been presented. It is observed that the velocity near the plate increases with the timet, and the Grashof numberGr. The skin-friction has been found to vary ast 7/2 and the Nusselt number varies as or whereP is the Prandtl number.  相似文献   

4.
The effect of viscous dissipation on mixed convection flow about a rotating sphere with a prescribed uniform surface heat flux (UHF) has been investigated analytically. Merk's type of series expansions is used to obtain the heat transfer rate and the skin-friction coefficients. The results are presented for Pr=1;B=0, 1; *0, 0.5, 1 and various values of the dissipation parameter Ec* at various angular positions. As in the case of uniform wall temperature (UWT), the heat transfer rate decreases with viscous dissipation. It is also observed that for an equivalence viscous dissipation effect, heating by UHF yields larger Nusselt number than heating by UWT.  相似文献   

5.
The stability of ballooning modes in coronal arcades is studied using linear visco-resistive MHD. Rigid wall conditions are adopted for modelling the photospheric line-tying of the magnetic field. The full Braginskii viscosity stress tensor is used and particular attention is given to the effect of the viscosity coefficient 3 which was left out of an earlier investigation by Van der Linden, Goossens, and Hood (1987, 1988). The numerical results for shearless arcades show that the coefficient 3 has a stabilizing effect. However, for realistic values of the equilibrium quantities the stabilizing effect by 3 can be neglected in comparison with the strong stabilizing effect of the perpendicular viscosity. The effect of magnetic field strength and mode number on stability are determined. In particular it is found that there exists a critical field strength for every mode number such that the mode is stable for weaker fields and unstable for stronger fields.  相似文献   

6.
An analysis of the two-dimensional flow of water at 4°C past an infinite porous plate is presented, when the plate is subjected to a normal suction velocity and the heat flux at the plate is constant. Approximate solutions are derived for the velocity and temperature fields and the skin-friction. The effects ofG (Grashof number) andE (Eckert number) on the velocity and temperature fields are discussed.Nomenclature u, v velocity components of the fluid inx, y direction - g acceleration due to gravity - coefficient of thermal expansion of water at 4°C - v kinematic viscosity - density - T temperature inside thermal boundary layer - T free-stream temperature - k thermal conductivity - C p specific heat at constant pressure  相似文献   

7.
Hall effects on the flow of electrically conducting rarefied gas due to combined buoyant effects of thermal and mass diffusion past an infinite porous plate with constant suction in the presence of strong transverse magnetic field have been investigated. The equations governing the flow poblem have been solved for primary, secondary velocities and temperature. The effects of Hall current, magnetic field and the effect of rarefication have been discussed graphically followed by a discussion.Nomenclature x,y coordinate system - u velocity inx direction - v 0 suction velocity - w velocity inz direction - E Eckert number - G, G* Grashof numbers - h 1 velocity slip coefficient - h 2 temperature jump coefficient - h 3 concentration jump coefficient - M, m magnetic field parameter, Hall parameter - Pr Prandtl number - Sc Schmidt number - T, T w, T temperature in flow regime, plate temperature, temperature outside the boundary layer very away from the plate - C, C w, C concentration of the gas in flow, concentration at the plate, concentration far away from the plate - thermal conductivity - D coefficient of chemical molecular diffusion - coefficient of kinematic viscosity - coefficient of viscosity - electrical conductivity - C p specific heat of gas at constant pressure density  相似文献   

8.
Radio measurements of the electron temperature ofHii regions are obtained from the ratio of the brightness temperature of a hydrogen recombination line to that of the adjacent continuum, while optical measurements are obtained from the ratio of [Oiii] forbidden-line intensities. The radio and optical measurements made under the assumption of an isothermalHii region,T R andT opt respectively, are combined to derive a temperature distribution for an entire nebula. A sphericalHii region in local thermodynamic equilibrium with constant density which is optically thin in both the line and the continuum is used as a model. Assuming linear temperature gradients withT R=6000K andT opt=10000K, it is found thatT=12000K (1–0.74r/R), wherer is the distance from the center andR is the radius of the nebula.  相似文献   

9.
Properties of three-dimensional ion-acoustic solitary and shock waves accompining electron-positron-ion magnetoplasma with high-energy (superthermal) electrons and positrons are investigated. For this purpose, a Zakharov-Kuznetsov-Burgers (ZKB) equation is derived from the ion continuity equation, ion momentum equation with kinematic viscosity among ions fluid, electrons, and positrons having kappa distribution together with the Poisson equation. The dependence of the solitary and shock excitations characteristics on the parameter measuring the superthermality κ, the ion gyrofrequency Ω, the unperturbed positrons-to-ions density ratio ν, the viscosity parameter η, the direction cosine , the ion-to-electron temperature ratio σ i , and the electron-to-positron temperature ratio σ p have been investigated. Moreover, it is found that the parameters κ, Ω, ν, η, and lead to accelerate the particles, whereas the parameters σ i and σ p would lead to decelerate them. Numerical calculations reveal that the nonlinear pulses polarity are always positive. This study could be useful to understand the nonlinear electrostatic excitations in interstellar medium.  相似文献   

10.
Thermal convection has considerable influence on the thermal evolution of terrestrial planets. Previous numerical models of planetary convection have solved the system of partial differential equations by finite difference methods, or have approximated it by parametrized methods. We have evaluated the applicability of a finite element solution of these equations. Our model analyses the thermal history of a self-gravitating spherical planetary body; it includes the effects of viscous dissipation, internal melting, adiabatic gradient, core formation, variable viscosity, decay of radioactive nucleides, and a depth dependent initial temperature profile. Reflecting current interest, physical parameters corresponding to the Moon were selected for the model.Although no initial basalt ocean is assumed for the Moon, partial melting is observed very early in its history; this is presumably related to the formation of the basalt maria. The convection pattern appears to be dominated by an L-2 mode. The present-day lithospheric thickness in the model is 600 km, with core-mantle temperatures close to 1600 K. Surface heat flux is 25.3 mW m–2, higher than the steady state-value by about 16%.The finite element method is clearly applicable to the problem of planetary evolution, but much faster solution algorithms will be necessary if a sufficient number of models are to be examined by this method.Notation coefficient of thermal expansion - ij Kronecker delta - absolute or dynamic viscosity - perturbation in temperature - thermal diffusivity - kinematic viscosity - density - stress tensor - B.P. before present - c specific heat at constant pressure or volume (Boussinesq approximation) - d depth of convection - E * activation energy for creep - g gravity - Ga billions of years - H(t) heat generation per unit mass per unit time at timet - k Boltzmann's constant - K mean thermal conductivity - Ma millions of years - p pressure - q heat flux - q ss steady-state heat flux - Ra Rayleigh number - S volumetric heat sources, includes radioactivity and viscous dissipation - t time - T temperature - u verocity vector - V * activation volume for creep  相似文献   

11.
Slow magnetohydrodynamic (MHD) standing wave oscillations in hot coronal loops for both strong (i.e. τd/P∼ 1) and weak (i.e. τd/P≥ 2) damping are investigated taking account of viscosity, thermal conductivity and optically thin radiation. The individual effect of the dissipative terms is not sufficient to explain the observed damping. However, the combined effect of these dissipative terms is sufficient to explain the observed strong damping, as well as weak damping seen by SUMER. We find that, the ratio of decay time (τd) and period (P) of wave, i.e., τd/P (which defines the modes of damping, whether it is strong or weak) is density dependent. By varying density from 108 to 1010 cm−3 at a fixed temperature in the temperature range 6 – 10 MK, observed by SUMER, we get two sets of damping: one for which τ d/P∼ 1 corresponds to strong damping that occurs at lower density and another that occurs at higher density for which τd/P ≥ 2 corresponds to weak damping. Contrary to strong-damped oscillations, the effect of optically thin radiation provides some additional dissipation apart from thermal conductivity and viscosity in weak-damped oscillations. We have, therefore, derived a resultant dispersion relation including the effect of optically thin radiation. Solutions of this dispersion relation illustrate how damping time varies with physical parameters of loops in both strong and weak damping cases.  相似文献   

12.
An analysis of Rayleigh's problem (also Stokes's problem) for the flow of a viscous fluid (e.g. of a stellar atmosphere) past an impulsively started infinite, vertical porous limiting surface (e.g. of a star) with constant suction, when the free stream velocity oscillates in time about a constant mean, has been carried out. On solving the coupled non-linear equations in approximate way, expressions for the mean velocity, the mean temperature, the mean skin-friction and the mean rate of heat transfer, expressed in terms of Nusselt number, are obtained. The effects of Grashof numberG, Eckert numberE and Prandtl numberP, on these quantities, is discussed for the cases of an externally heating and cooling of the limiting surface, by the free convection currents, and the variations of them are shown graphically.  相似文献   

13.
The temporal evolution of temperature in a dissolving granule and in an adjacent intergranular space is presented. The semi‐empirical evolutionary models have been calculated using an inversion method applied to 4‐min time series of Stokes I spectral line profiles. The models are presented in the form of the functional dependence of temperature T(log τ5, t) on optical depth τ5 at 500 nm and time t. The observed disappearance of the granule is accompanied with overall cooling of the granular photosphere. Temperature changes greater than 100 K have been found in deeper (log τ5 ≥ 0) and upper layers (log τ5 ≤ –2) whereas the intermediate layers are thermally stable. The intergranular space, which is 2 arcsec off the granule, keeps the temperature structure of the layers from log τ5 = 0.5 to log τ5 = –2 without global evolutionary changes except short‐term and spatially confined heating. Finally, the significant temperature changes in the upper layers (log τ5 ≤ 2.5) observed during the time interval of 4 min are found to be typical for the granular and intergranular photosphere.  相似文献   

14.
An exact analysis of Hall current on hydromagnetic free convection with mass transfer in a conducting liquid past an infinite vertical porous plate in a rotating fluid has been presented. Exact solution for the velocity field has been obtained and the effects ofm (Hall parameter),E (Ekman number), andS c (Schmidt number) on the velocity field have been discussed.Nomenclature C species concentration - C w concentration at the porous plate - C species concentration at infinity - C p specific heat at constant pressure - D chemical molecular diffusivity - g acceleration due to gravity - E Ekman number - G Grashof number - H 0 applied magnetic field - j x, jy, jz components of the current densityJ - k thermal conductivity - M Hartman number - m Hall parameter - P Prandtl number - Q heat flux per unit area - S c Sehmidt number - T temperature of the fluid near the plate - T w temperature of the plate - T temperature of the fluid in the free-stream - u, v, w components of the velocity fieldq, - U uniform free stream velocity - w 0 suction velocity - x, y, z Cartesian coordinates - Z dimensionless coordinate normal to the plate. Greek symbols coefficient of volume expansion - * coefficient of expansion with concentration - e cyclotron frequency - dimensionless temperature - * dimensionless concentration - v kinematic viscosity - density of the fluid in the boundary layer - coefficient of viscosity - e magnetic permeability - angular velocity - electrical conductivity of the fluid - e electron collision time - u skin-friction in the direction ofu - v skin-friction in the direction ofv  相似文献   

15.
The present study presents an analytical solution to the flow field of the unsteady laminar accelerated flow of a viscous incompressible fluid past an infinite vertical porous limiting surface, when the freestream is accelerated and the limiting surface temperature and concentration are given functions of time. The expressions for the velocity, temperature and skin friction are obtained by using Laplace transform, when the Prandtl and Schmidt numbers are given. Graphs showing variations of the velocity and the skin friction, for different values ofG r andG c (modified Grashof number), as well as of the temperature are plotted and the results are discussed.  相似文献   

16.
The magnetorotational instability (MRI) of differential rotation under the simultaneous presence of axial and azimuthal components of the (current‐free) magnetic field is considered. For rotation with uniform specific angular momentum the MHD equations for axisymmetric perturbations are solved in a local short‐wave approximation. All the solutions are overstable for Bz · Bϕ ≠ 0 with eigenfrequencies approaching the viscous frequency. For more flat rotation laws the results of the local approximation do not comply with the results of a global calculation of the MHD instability of Taylor‐Couette flows between rotating cylinders. – With Bϕ and Bz of the same order the traveling‐mode solutions are also prefered for flat rotation laws such as the quasi‐Kepler rotation. For magnetic Prandtl number Pm 0 they scale with the Reynolds number of rotation rather than with the magnetic Reynolds number (as for standard MRI) so that they can easily be realized in MHD laboratory experiments. – Regarding the nonaxisymmetric modes one finds a remarkable influence of the ratio Bϕ/Bz only for the extrema. For Bϕ ≫ Bz and for not too small Pm the nonaxisymmetric modes dominate the traveling axisymmetric modes. For standard MRI with Bz ≫ Bϕ, however, the critical Reynolds numbers of the nonaxisymmetric modes exceed the values for the axisymmetric modes by many orders so that they are never prefered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
G. Thejappa 《Solar physics》1991,132(1):173-193
A self-consistent theoretical model for storm continuum and bursts is presented. We propose that the Langmuir waves are emitted spontaneously by an anisotropic loss-cone distribution of electrons trapped in the magnetic field above active regions. These high-frequency electrostatic waves are assumed to coalesce with lower-hybrid waves excited either by the trapped protons or by weak shocks, making the observed brightness temperature equal to the effective temperature of the Langmuir waves.It is shown that whenever the collisional damping ( c ) is more than the negative damping (- A ) due to the anisotropic distribution, there is a steady emission of Langmuir waves responsible for the storm continuum. The type I bursts are generated randomly whenever the collisional damping ( c ) is balanced by the negative damping (- A ) at the threshold density of the trapped particles, since it causes the effective temperature of Langmuir waves to rise steeply. The number density of the particles responsible for the storm radiation is estimated. The randomness of type I bursts, brightness temperature, bandwidth and transition from type I to type III storm are self-consistently explained.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

18.
The heat transfer in the boundary layer over a hot porous semi-infinite flat plate for a two-component plasma model is computed using an asymptotic series expansion for large suction. The temperature distribution and the Nusselt number are compared with those of a fully-ionized plasma, with and without thermal radiation. Radiative effect increases the range of influence of the temperature and the value of the Nusselt number.  相似文献   

19.
In this paper we have investigated the beat wave excitation of an ion-acoustic wave at the difference frequency of two kinetic (or shear) Alfvén waves propagating in a magnetized plasma with β<1 (β=8π n e0 T e/B 0 2 , where n e0 is the unperturbed electron number density, T e is the electron temperature, and B 0 is the external magnetic field). On account of the interaction between two kinetic Alfvén waves of frequencies ω 1 and ω 2, the ponderomotive force at the difference frequency ω 1ω 2 leads to the generation of an ion-acoustic wave. Also because of the filamentation of the Alfvén waves, magnetic-field-aligned density dips are observed. In this paper we propose that the ion-acoustic wave generated by this mechanism may be one of the possible mechanisms for the heating and acceleration of solar wind particles.  相似文献   

20.
The nonaxisymmetric Tayler instability of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two coaxial cylinders without endplates. The inner cylinder is considered as so thin that the limit of Rin → 0 can be computed. The magnetic Prandtl number is varied over many orders of magnitudes but the azimuthal mode number of the perturbations is fixed to m = 1. In the linear approximation the critical magnetic field amplitudes and the growth rates of the instability are determined for both resting and rotating cylinders. Without rotation the critical Hartmann numbers do not depend on the magnetic Prandtl number but this is not true for the corresponding growth rates. For given product of viscosity and magnetic diffusivity the growth rates for small and large magnetic Prandtl number are much smaller than those for Pm = 1. For gallium under the influence of a magnetic field at the outer cylinder of 1 kG the resulting growth time is 5 s. The minimum electric current through a container of 10 cm diameter to excite the instability is 3.20 kA. For a rotating container both the critical magnetic field and the related growth times are larger than for the resting column (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号