首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collapse of the West-Antarctic Ice Sheet (WAIS) would cause a sea level rise of 5–6 m, perhaps even within 100 years, with catastrophic consequences. The probability of such a collapse is small but increasing with the rise of the atmospheric concentrations of greenhouse gas and the resulting climate change. This paper investigates how the potential collapse of the WAIS affects the optimal rate of greenhouse gas emission control. We design a decision and learning tree in which decision are made about emission reduction at regular intervals: the decision makers (who act as social planners) have to decide whether to implement the environmental or not (keeping then the flexibility to act later). By investing in the environmental policy, they determine optimally the date of the optimal emission reduction. At the same time, they receive new information on the probability of a WAIS collapse and the severity of its impacts. The probability of a WAIS collapse is endogenous and contingent on greenhouse gas concentrations. We solve this optimisation problem by backward induction. We find that a potential WAIS collapse substantially bring the date of the optimal emission reduction forward and increases its amount if the probability is high enough (a probability of 1% per year for the worst case), if the impacts are high enough (a worst case damage of 10% of GDP for a 3?C warming) or if the decision maker is risk averse enough (for example a social damage due to pollution equal to 1% GDP for an atmospheric temperature of 3?C). We also find that, as soon as a WAIS collapse is a foregone fact, emission reduction falls to free up resource to prepare for adapting to the inevitable. By contrast, adaptation (such as building dikes along the coast) postpones policy intervention because that strategy reduces the risk of catastrophic damages.  相似文献   

2.
What could happen to the Netherlands if, in 2030, the sea level starts to rise and eventually, after 100 years, a sea level of 5 m above current level would be reached? This question is addressed by studying literature, by interviewing experts in widely differing fields, and by holding an expert workshop on this question. Although most experts believe that geomorphology and current engineering skills would enable the country to largely maintain its territorial integrity, there are reasons to assume that this is not likely to happen. Social processes that precede important political decisions – such as the growth of the belief in the reality of sea level rise and the framing of such decisions in a proper political context (policy window) – evolve slowly. A flood disaster would speed up the decision-making process. The shared opinion of the experts surveyed is that eventually part of the Netherlands would be abandoned.  相似文献   

3.
The threat of an abrupt and extreme rise in sea level is widely discussed in the media, but little understood in practise, especially the likely impacts of such a rise including a potential adaptation response. This paper explores for the first time the global impacts of extreme sea-level rise, triggered by a hypothetical collapse of the West Antarctic Ice Sheet (WAIS). As the potential contributions remain uncertain, a wide range of scenarios are explored: WAIS contributions to sea-level rise of between 0.5 and 5 m/century. Together with other business-as-usual sea-level contributions, in the worst case this gives an approximately 6-m rise of global-mean sea level from 2030 to 2130. Global exposure to extreme sea-level rise is significant: it is estimated that roughly 400 million people (or about 8% of global population) are threatened by a 5-m rise in sea level, just based on 1995 data. The coastal module within the Climate Framework for Uncertainty, Negotiation and Distribution (FUND) model is tuned with global data on coastal zone characteristics concerning population, land areas and land use, and then used for impact analysis under the extreme sea-level rise scenarios. The model considers the interaction of (dry)land loss, wetland loss, protection costs and human displacement, assuming perfect adaptation based on cost-benefit analysis. Unlike earlier analyses, response costs are represented in a non-linear manner, including a sensitivity analysis based on response costs. It is found that much of the world’s coast would be abandoned given these extreme scenarios, although according to the global model, significant lengths of the world’s coast are worth defending even in the most extreme case. This suggests that actual population displacement would be a small fraction of the potential population displacement, and is consistent with the present distribution of coastal population, which is heavily concentrated in specific areas. Hence, a partial defence can protect most of the world’s coastal population. However, protection costs rise substantially diverting large amounts of investment from other sectors, and large areas of (dry)land and coastal wetlands are still predicted to be lost. Detailed case studies of the WAIS collapse in the Netherlands, Thames Estuary and the Rhone delta suggest greater abandonment than shown by the global model, probably because the model assumes perfect implementation of coastal protection and does not account for negative feedbacks when implementation is imperfect. The significant impacts found in the global model together with the potential for greater impacts as found in the detailed case studies shows that the response to abrupt sea-level rise is worthy of further research.  相似文献   

4.
Two linear methods, including the simple linear addition and linear addition by expansion, and numerical simulations were employed to estimate storm surges and associated flooding caused by Hurricane Andrew for scenarios of sea level rise (SLR) from 0.15 m to 1.05 m with an interval of 0.15 m. The interaction between storm surge and SLR is almost linear at the open Atlantic Ocean outside Biscayne Bay, with slight reduction in peak storm surge heights as sea level rises. The nonlinear interaction between storm surges and SLR is weak in Biscayne Bay, leading to small differences in peak storm surge heights estimated by three methods. Therefore, it is appropriate to estimate elevated storm surges caused by SLR in these areas by adding the SLR magnitude to storm surge heights. However, the magnitude and extent of inundation at the mainland area by Biscayne Bay estimated by numerical simulations are, respectively, 22–24 % and 16–30 % larger on average than those generated by the linear addition by expansion and the simple linear addition methods, indicating a strong nonlinear interaction between storm surge and SLR. The population and property affected by the storm surge inundation estimated by numerical simulations differ up to 50–140 % from that estimated by two linear addition methods. Therefore, it is inappropriate to estimate the exacerbated magnitude and extent of storm surge flooding and affected population and property caused by SLR by using the linear addition methods. The strong nonlinear interaction between surge flooding and SLR at a specific location occurs at the initial stage of SLR when the water depth under an elevated sea level is less than 0.7 m, while the interaction becomes linear as the depth exceeds 0.7 m.  相似文献   

5.
Sea-level rise (SLR) due to climate change is a serious global threat: The scientific evidence is now overwhelming. Continued growth of greenhouse gas emissions and associated global warming could well promote SLR of 1 m in this century, and unexpectedly rapid breakup of the Greenland and West Antarctic ice sheets might produce a 3–5 m SLR. In this paper, we assess the consequences of continued SLR for 84 coastal developing countries. Geographic Information System (GIS) software has been used to overlay the best available, spatially disaggregated global data on critical impact elements (land, population, agriculture, urban extent, wetlands, and GDP), with the inundation zones projected for 1–5 m SLR. Our results reveal that tens of millions of people in the developing world are likely to be displaced by SLR within this century; and accompanying economic and ecological damage will be severe for many. At the country level results are extremely skewed, with severe impacts limited to a relatively small number of countries.  相似文献   

6.
It is now almost 30 years since John Mercer (1978) first presented the idea that climate change could eventually cause a rapid deglaciation, or “collapse,” of a large part of the West Antarctic ice sheet (WAIS), raising world sea levels by 5 m and causing untold economic and social impacts. This idea, apparently simple and scientifically plausible, created a vision of the future, sufficiently alarming that it became a paradigm for a generation of researchers and provided an icon for the green movement. Through the 1990s, however, a lack of observational evidence for ongoing retreat in WAIS and improved understanding of the complex dynamics of ice streams meant that estimates of likelihood of collapse seemed to be diminishing. In the last few years, however, satellite studies over the relatively inaccessible Amundsen Sea sector of West Antarctica have shown clear evidence of ice sheet retreat showing all the features that might have been predicted for emergent collapse. These studies are re-invigorating the paradigm, albeit in a modified form, and debate about the future stability of WAIS. Since much of WAIS appears to be unchanging, it may, no longer be reasonable to suggest there is an imminent threat of a 5-m rise in sea level resulting from complete collapse of the West Antarctic ice sheet, but there is strong evidence that the Amundsen Sea embayment is changing rapidly. This area alone, contains the potential to raise sea level by around ~1.5 m, but more importantly it seems likely that it could, alter rapidly enough, to make a significant addition to the rate of sea-level rise over coming two centuries. Furthermore, a plausible connection between contemporary climate change and the fate of the ice sheet appears to be developing. The return of the paradigm presents a dilemma for policy-makers, and establishes a renewed set of priorities for the glaciological community. In particular, we must establish whether the hypothesized instability in WAIS is real, or simply an oversimplification resulting from inadequate understanding of the feedbacks that allow ice sheets to achieve equilibrium: and whether there is any likelihood that contemporary climate change could initiate collapse.  相似文献   

7.
Sea-level rise (SLR) threatens islands and coastal communities due to vulnerable infrastructure and populations concentrated in low-lying areas. LiDAR (Light Detection and Ranging) data were used to produce high-resolution DEMs (Digital Elevation Model) for Kahului and Lahaina, Maui, to assess the potential impacts of future SLR. Two existing LiDAR datasets from USACE (U.S. Army Corps of Engineers) and NOAA (National Oceanic and Atmospheric Administration) were compared and calibrated using the Kahului Harbor tide station. Using tidal benchmarks is a valuable approach for referencing LiDAR in areas lacking an established vertical datum, such as in Hawai‘i and other Pacific Islands. Exploratory analysis of the USACE LiDAR ground returns (point data classified as ground after the removal of vegetation and buildings) indicated that another round of filtering could reduce commission errors. Two SLR scenarios of 0.75 (best-case) to 1.9 m (worst-case) (Vermeer and Rahmstorf Proc Natl Acad Sci 106:21527–21532, 2009) were considered, and the DEMs were used to identify areas vulnerable to flooding. Our results indicate that if no adaptive strategies are taken, a loss ranging from $18.7 million under the best-case SLR scenario to $296 million under the worst-case SLR scenario for Hydrologically Connected (HC; marine inundation) and Hydrologically Disconnected (HD; drainage problems due to a higher water table) areas combined is possible for Kahului; a loss ranging from $57.5 million under the best-case SLR scenario to $394 million under the worst-case SLR scenario for HC and HD areas combined is possible for Lahaina towards the end of the century. This loss would be attributable to inundation between 0.55 km2 to 2.13 km2 of area for Kahului, and 0.04 km2 to 0.37 km2 of area for Lahaina.  相似文献   

8.
长江口海平面上升预测及其对滨海湿地影响   总被引:1,自引:0,他引:1  
选择吴淞站和吕四站2个验潮站数据,通过统计学方法进行长江口海平面上升预测,从而构建了一套长江口地区较完备的海平面上升情景库:以2013年为基准年份,其最佳预测值的范围在2030年、2050年、2100年分别为50~217 mm,118~430 mm,256~1215 mm。以此情景库为基础,探究海平面上升变化对长江口滨海湿地的影响,结果表明:随着海平面上升值的增加,长江口滨海湿地的面积不断减少;在基于验潮站数据作趋势外推得到的情景下,湿地面积减少较平缓,而在考虑全球变暖背景的情景下,湿地面积减少迅速;且不论在何种情景下,时间尺度越大,湿地减少的面积越大。  相似文献   

9.
Accurate sea-level rise (SLR) vulnerability assessments are essential in developing effective management strategies for coastal systems at risk. In this study, we evaluate the effect of combining vertical uncertainties in Light Detection and Ranging (LiDAR) elevation data, datum transformation and future SLR estimates on estimating potential land area and land cover loss, and whether including uncertainty in future SLR estimates has implications for adaptation decisions in Kahului, Maui. Monte Carlo simulation is used to propagate probability distributions through our inundation model, and the output probability surfaces are generalized as areas of high and low probability of inundation. Our results show that considering uncertainty in just LiDAR and transformation overestimates vulnerable land area by about 3 % for the high probability threshold, resulting in conservative adaptation decisions, and underestimates vulnerable land area by about 14 % for the low probability threshold, resulting in less reliable adaptation decisions for Kahului. Not considering uncertainty in future SLR estimates in addition to LiDAR and transformation has variable effect on SLR adaptation decisions depending on the land cover category and how the high and low probability thresholds are defined. Monte Carlo simulation is a valuable approach to SLR vulnerability assessments because errors are not required to follow a Gaussian distribution.  相似文献   

10.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

11.
The morphodynamic response of large tidal inlet/basin systems to future relative sea level rise (RSLR), incorporating both Eustatic sea level rise and local land subsidence effects, is qualitatively investigated using the state-of-the-art Delft3D numerical model and the Realistic analogue modelling philosophy. The modelling approach is implemented on a highly schematised morphology representing a typical large inlet/basin system located on the Dutch Wadden Sea (Ameland Inlet) over a 110-year study period. Three different RSLR Scenarios are considered: (a) No RSLR, (b) IPCC lower sea level rise (SLR) projection (0.2?m SLR by 2100 compared to 1990) and land subsidence, and (c) IPCC higher SLR projection (0.7?m SLR by 2100 compared to 1990) and land subsidence. Model results indicate that, for the 110-year study duration, the existing flood dominance of the system will increase with increasing rates of RSLR causing the ebb-tidal delta to erode and the basin to accrete. The rates of erosion/accretion are positively correlated with the rate of RSLR. Under the No RSLR condition, the tidal flats continue to develop while under the high RSLR scenario tidal flats eventually drown, implying that under this condition the system may degenerate into a tidal lagoon within the next 110?years. The tidal flats are stable under the low RSLR scenario implying that, at least for the next 100?years, this may be the critical RSLR condition for the maintenance of the system. Essentially the results of this study indicate that, as the Eustatic SLR is likely to be greater than the apparently critical rise of 0.2?m (by 2100 compared to 1990), the tidal flats in these systems will at least diminish. In the worst, but not unlikely, scenario that the Eustatic SLR is as high as the IPCC higher projections (0.7?m by 2100), the tidal flats may completely disappear. In either case, the associated environmental and socio-economic impacts will be massive. Therefore, more research focusing on the quantification of the physical and socio-economic impacts of RSLR on these systems is urgently needed to enable the development of effective and timely adaptation strategies.  相似文献   

12.
Toward a physically plausible upper bound of sea-level rise projections   总被引:3,自引:1,他引:2  
Anthropogenic sea-level rise (SLR) causes considerable risks. Designing a sound SLR risk-management strategy requires careful consideration of decision-relevant uncertainties such as the reasonable upper bound of future SLR. The recent Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment reported a likely upper SLR bound in the year 2100 near 0.6 m (meter). More recent studies considering semi-empirical modeling approaches and kinematic constraints on glacial melting suggest a reasonable 2100 SLR upper bound of approximately 2 m. These recent studies have broken important new ground, but they largely neglect uncertainties surrounding thermal expansion (thermosteric SLR) and/or observational constraints on ocean heat uptake. Here we quantify the effects of key parametric uncertainties and observational constraints on thermosteric SLR projections using an Earth system model with a dynamic three-dimensional ocean, which provides a mechanistic representation of deep ocean processes and heat uptake. Considering these effects nearly doubles the contribution of thermosteric SLR compared to previous estimates and increases the reasonable upper bound of 2100 SLR projections by 0.25 m. As an illustrative example of the effect of overconfidence, we show how neglecting thermosteric uncertainty in projections of the SLR upper bound can considerably bias risk analysis and hence the design of adaptation strategies. For conditions close to the Port of Los Angeles, the 0.25 m increase in the reasonable upper bound can result in a flooding-risk increase by roughly three orders of magnitude. Results provide evidence that relatively minor underestimation of the upper bound of projected SLR can lead to major downward biases of future flooding risks.  相似文献   

13.
Complete collapse of the West Antarctic Ice Sheet (WAIS) would raise global sea level by around 5 m, but whether collapse is likely, or even possible, has been `glaciology's grand unsolved problem' for more than two decades. Collapse of WAIS may result from readjustments continuing since the last glacial maximum, or more recent climate change, but it is also possible that collapse will result from internal flow instabilities, or not occur at all in the present inter-glacial. Such complexity led the Intergovernmental Panel on Climate Change to conclude in its Second Assessment Report that `estimating the likelihood of a collapse during the next century is not yet possible'. However, a refusal by scientists to estimate the risk leaves policy-makers with no sound scientific basis on which to respond to legitimate public concerns. Here we present a discussion of the likelihood of WAIS-collapse, drawing input from an interdisciplinary panel of experts. The results help to summarise the state of scientific knowledge and uncertainty. While the overall opinion of the panel was that WAIS most likely will not collapse in the next few centuries, their uncertainty retains a 5% probability of WAIS causing sea level rise at least 10 mm/year within 200 years. Since this uncertainty reflects both the unpredictability of the physical system and the scientific uncertainty, it will undoubtedly change as a better understanding is established.  相似文献   

14.
Against a background of climate change, Macau is very exposed to sea level rise(SLR) because of its low elevation,small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially,possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1over 1925–2010 and jumping to 4.2 mm yr-1over 1970–2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8–12, 22–51 and 35–118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2Representative Concentration Pathway(RCP8.5) scenario the increase in sea level by2100 will reach 65–118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21 st century but begin to diverge thereafter.  相似文献   

15.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   

16.
This paper considers the perceptions and responses of selected stakeholders to a very low probability but high consequence climatic ‘surprise’—a scenario of rapid collapse of the West Antarctic ice sheet, producing a global rise in sea-level of 5  m over 100 years. It uses a case study of the Thames Estuary, UK, including London. Through a process of dialogue involving one-to-one interviews and a 1-day policy exercise, we addressed influences on decision-making when information is uncertain and our ability to plan, prepare for and implement effective ways of coping with this extreme scenario. The interviews and policy exercise explored plausible responses to the scenario and identified weaknesses in flood management approaches to dealing with such an occurrence. The analysis shows that an extreme scenario could be highly challenging, even for an area with well-developed institutions. Participants favoured two options (a) reconfiguring London around the rising water, and (b) building a new downstream barrier which would allow London to continue as today. The lack of consensus suggests the potential for policy paralysis in response to what is a highly uncertain phenomena—this could lead to a forced, unplanned response as the rapid change overwhelmed the existing defence capability. Hence, low probability, high consequence climatic events may challenge our existing institutions. Adaptive management is presented as an approach which could address this challenge.  相似文献   

17.
In an attempt to estimate accurate local sea level change, “sea level trend” modes are identified and separated from natural variability via cyclostationary empirical orthogonal function (CSEOF) analysis applied to both the tide gauge data (1965–2013) and the reconstruction data (1950–2010) around the Korean Peninsula. For the tide gauge data, ensemble empirical mode decomposition (EEMD) method is also used to estimate sea level trend to understand an uncertainty from different analysis tools. The three trend models—linear, quadratic, and exponential—are fitted to the amplitude time series of the trend mode so that future projection of sea level can be made. Based on a quadratic model, the rate of local sea level rise (SLR) is expected to be 4.63?±?1.1 mm year?1 during 2010–2060. The estimates of “local” sea level trend vary up to ~30%. It should be noted that, although the three trend models estimate similar sea level trends during the observational period, the projected sea level trend and subsequent SLR differ significantly from one model to another and between the tide gauge data and the reconstruction data; this results in a substantial uncertainty in the future SLR around the Korean Peninsula.  相似文献   

18.
We made projections of relative sea-level rise, horizontal inundation, and the associated impacts on people and infrastructure in the coastal portion of the Mid- and Upper-Atlantic Region (MUAR) of the United States. The output of five global climate models (GCMs) run under two greenhouse gas scenarios was used in combination with tide gauge observations to project sea-level increases ranging from 200 to 900 mm by 2100, depending on location, GCM and scenario. The range mainly reflects equal contributions of spatial variability (due to subsidence) and GCM uncertainty, with a smaller fraction of the range due to scenario uncertainty. We evaluated 30-m Digital Elevation Models (DEMs) using 10-m DEMs and LIDAR data at five locations in the MUAR. We found average RMS differences of 0.3 m with the 10-m DEMs and 1.2 m with the LIDAR data, much lower than the reported mean RMS errors of 7 m for the 30-m DEMs. Using the 30-m DEMs, the GCM- and scenario-means of projected sea-level rise, and local subsidence estimates, we estimated a total inundation of 2,600 km2 for the MUAR by 2100. Inundation area increases to 3,800 km2 at high tide if we incorporate local tidal ranges in the analysis. About 510,000 people and 1,000 km of road lie within this area. Inundation area per length of coastline generally increases to south, where relative sea-level rise is greater and relief is smaller. More economically developed states, such as New York and New Jersey, have the largest number of people and infrastructure exposed to risk of inundation due to sea-level rise.  相似文献   

19.
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections. We provide a framework of SLR allowances that employs complete probability distributions of local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. We illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.  相似文献   

20.
Estimates of twenty-first century sea-level changes for Norway   总被引:1,自引:0,他引:1  
In this work we establish a framework for estimating future regional sea-level changes for Norway. Following recently published works, we consider how different physical processes drive non-uniform sea-level changes by accounting for spatial variations in (1) ocean density and circulation (2) ice and ocean mass changes and associated gravitational effects on sea level and (3) vertical land motion arising from past surface loading change and associated gravitational effects on sea level. An important component of past and present sea-level change in Norway is glacial isostatic adjustment. Central to our study, therefore, is a reassessment of vertical land motion using a far larger set of new observations from a permanent GNSS network. Our twenty-first century sea-level estimates are split into two parts. Firstly, we show regional projections largely based on findings from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) and dependent on the emission scenarios A2, A1B and B1. These indicate that twenty-first century relative sea-level changes in Norway will vary between ?0.2 to 0.3 m (1-sigma ± 0.13 m). Secondly, we explore a high-end scenario, in which a global atmospheric temperature rise of up to 6 °C and emerging collapse for some areas of the Antarctic ice sheets are assumed. Using this approach twenty-first century relative sea-level changes in Norway are found to vary between 0.25 and 0.85 m (min/max ± 0.45 m). We attach no likelihood to any of our projections owing to the lack of understanding of some of the processes that cause sea-level change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号