首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Studies of the effects of differential ground motions on structural response generally do not consider the effects of the soil-structure interaction. On the other end, studies of soil-structure interaction commonly assume that the foundation of the structure (surface or embedded) is rigid. The former ignore the scattering of waves from the foundation and radiation of energy from the structure back to the soil, while the latter ignore quasi-static forces in the foundations and lower part of the structure deforming due to the wave passage. This paper studies a simple model of a dike but considers both the soil-structure interaction and the flexibility of the foundation. The structure is represented by a wedge resting on a half-space and excited by incident plane SH-waves. The structural ‘foundation’ is a flexible surface that can deform during the passage of seismic waves. The wave function expansion method is used to solve for the motions in the half-pace and in the structure. The displacements and stresses in the structure are compared with those for a fixed-base model shaken by the free-field motion. The results show large displacements near the base of the structure due to the differential motion of the base caused by the wave passage.  相似文献   

2.
We evaluate the influence of topography on motions recorded at the base and crest of an approximate 3H:1V, 20 m single-faced slope. The motions were recorded during the 1983 Coalinga earthquake mainshock and two aftershocks. Mainshock peak accelerations at the crest and base transverse to the slope face were 0.59 and 0.38 g, respectively. The spectral amplification of crest motion occurred across T≈0–2 s. Differences between the crest/base motions are postulated to result principally from soil-structure interaction (base instrument is in a structure), variations in local ground response, and topography. Transfer functions quantifying soil-structure interaction (SSI) effects are evaluated and the base motion is modified at short periods to correct it to an equivalent free-field motion. The different levels of ground response at the crest and base are identified based on location-specific measurements of soil shear wave velocities. Differences between crest/base motions not accounted for by SSI or differential ground response are attributed to topographic effects. By these means, topographic spectral amplification (i.e. amplification relative to level ground conditions) is estimated to be about 1.2 at the crest and about 0.85–0.9 at the base across the period range T≈0.4–1.0 s.  相似文献   

3.
The problem of the through-soil coupling of structures has puzzled the researchers in the field for a long while, especially regarding the varied performance of identical, adjacent buildings in earthquakes. The phenomenon of structure-soil-structure interaction (SSSI) that has often been overlooked is recently being recognized: The possible effects in urban regions are yet to be thoroughly quantified. In this respect, the goal of this work was to rigorously investigate the interacting effects of adjacent buildings in a two-dimensional setting. Detailed finite element models of 5-, 15-, and 30-story structures, realistically designed, were used in forming building clusters on the viscoelastic half-space. Perfectly matched layers were used to properly define the half-space boundaries. The interaction of the structure and the soil medium because of the presence of spatially varying ground motion on the boundary of excavated region was considered. The effects of the foundation material and the distance between adjacent buildings on the structural behavior of the neighboring buildings were investigated using drift ratios and base shear quantities as the engineering demand parameters of interest. The effects of SSSI, first investigated in the frequency domain, was then quantified in the time domain using suites of appropriate ground motions in accordance with the soil conditions, and the results were compared with the counterpart SSI solution of a single building. The results showed that, for identical low-rise structures, the effects of SSSI were negligible. Yet, neglecting SSSI for neighboring closely spaced high-rise structures or building clusters with a large stiffness contrast was shown to lead to a considerable underestimation of the true seismic demands even compared with solutions obtained using the rigid base assumption.  相似文献   

4.
土-结构相互作用效应对结构基底地震动影响的试验研究   总被引:3,自引:0,他引:3  
利用土与结构动力相互作用振动台模型试验数据,通过各种试验工况下土层表面与基础表面加速度反应的比较,深入探讨了土与结构动力相互作用效应对高层建筑结构基底地震动的影响。从输入地震动频谱特性、输入地震动强度水平和上部结构动力特性3个方面详细分析了与SSI效应对高层建筑基底震动影响程度有关的一些因素。结果表明:SSI效应对高层建筑基底地震动的影响与输入地震波的动力特性有很大关系。在地震动的频谱成分方面,SSI效应对高层建筑基底地震动的影响主要体现为土层表面和基础表面在与输入地震动卓越频率相近处的频谱成分有较大差异;SSI效应对高层建筑基底地震动的影响程度随着输入加速度峰值水平的增加而减小;在某一特定地震波作用下,当上部结构的振动频率与地震地面运动的卓越频率相近时,SSI效应对高层建筑基底地震动的影响较为强烈。  相似文献   

5.
The model studied in this paper presents an extension of previous work for a shear wall on a semi-circular rigid foundation in an isotropic homogeneous and elastic half-space. The objective is to develop a soil-structure interaction model that can later be applied to the case of a flexible foundation. As shown in the Introduction below, Luco considered the case of a rigid foundation subjected to vertical incident plane SH waves, and Trifunac extended the solution for the same rigid foundation subjected to SH waves but for arbitrary angles of the incidence. In this paper, a new approach and model are presented for the same semi-circular rigid foundation with a tapered-shape (instead of rectangular) superstructure. The analytical expression for the deformation of the semi-circular rigid foundation below this tapered shear wall with soil-structure interaction in an isotropic homogeneous and elastic half-space is thus derived. Results are then compared with those of Trifunac discussed in the section below. This problem formulation can and will later be extended in the case of a flexible foundation that is semi-circular or arbitrarily shaped.  相似文献   

6.
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.  相似文献   

7.
采用波函数展开法,通过SH波入射均匀半空间中二维埋置半圆形刚柔复合基础-单质点模型,推导土-刚柔复合基础-上部结构动力相互作用的解析解,并验证解的正确性。研究表明:基础柔性对于系统响应峰值与系统频率有较大影响。考虑基础柔性后,上部结构相对响应峰值相比全刚性基础结果均有一定减小,且系统频率也会产生向低频偏移的现象。  相似文献   

8.
A study is made of the effect of soil-structure interaction on the coupled lateral and torsional responses of asymmetric buildings subjected to a series of historical free-field earthquake base motions. It sh shown that for particular classes of actual buildings the equivalent rigid-base responses are significantly increased for structures founded on medium-stiff soils, and hence the assumption of the major building codes that a conservative estimate of response is obtained by considering the structure to be fixed rigidly at its base is shown to be inconsistent with the presented dynamic results. It is shown that foundation interaction produces greatest amplification of torsional coupling effects for structures subjected to a particular class of European strong-motion earthquake records, identified by similarities in their spectral shape, for which the vibrational energy of the ground motion is distributed approximately uniformly over the range of frequencies which are of interest for real structures. It is recommended that provision be made in the torsional design procedures of building codes for the increase in the coupled torsional response due to soil-structure interaction as indicated in this study. Such provision should be based on the results of comprehensive parametric studies employing a wide selection of earthquake records and accounting for expected variations in localized soil conditions.  相似文献   

9.
采用ABAQUS有限元分析软件,分别对基于刚性地基假定的环板基础、考虑土-结构动力相互作用的环板基础和桩基础超大型冷却塔模型进行了模态分析、弹性和弹塑性时程分析,研究了土-结构动力相互作用和基础形式对超大型冷却塔结构动力特性和地震反应的影响。结果表明:当考虑相同阶数的振型时,刚性地基模型的振型参与质量系数最小。地震作用下,刚性地基模型和桩基础模型的加速度响应、支柱内力、塔壳混凝土主应力等一般比考虑土-结构动力相互作用的环板基础模型偏大,但塔顶水平位移偏小。土-结构动力相互作用比基础形式对冷却塔动力特性以及地震反应的影响更大,且二者对冷却塔竖向振动的影响比水平向大。三种模型计算所获得的冷却塔薄弱部位均集中于支柱,且支柱最大侧移角相差不大。  相似文献   

10.
Seismic fragilities of buildings are often developed without consideration of soil-structure interaction (SSI), where base of the building is assumed to be fixed. This study highlights effect of SSI and uncertainty in soil properties such as friction angle, cohesion, density, shear modulus and Poisson's ratio and foundation parameters on seismic fragilities of non-ductile reinforced concrete frames resting in dense silty sand. Three-, five-, and nine-storey three-bay moment resisting reinforced concrete frames resting on isolated shallow foundation are studied and the numerical models for SSI are developed in OpenSees. Three sets of 10 ground motions, with mean spectrum of 100, 500, and 1000 yr return period hazard level (matching EC-8 design spectrum), are used for the nonlinear time history analyses. An optimized Latin Hyper Cube sampling technique is used to draw the sample of soil properties and foundation parameters. The fragilities are developed for the fixed base model and SSI models. However, the fragilities that incorporate the soil parameter and foundation uncertainties are only slightly different from those based solely on the uncertainty in seismic demand from earthquake ground motion, suggesting that fragilities that are developed under the assumption that all soil and foundation parameters at their median (or mean) values are sufficient for the purpose of earthquake damage or loose estimation of structures resting on dense silty sand. But the consideration of the SSI effect has the significant influence on the fragilities compare to the fixed base model. The structural parameter uncertainty and foundation modeling uncertainty are not considered in the study.  相似文献   

11.
An analysis is made of the steady-state response of a bilinear hysteretic structure supported on the surface of a viscoelastic half-space. The method of equivalent linearization is used to solve the equations of motion, and simplified approximate formulas are obtained for the fundamental resonant frequency of the system and for an effective critical damping ratio. Numerical results indicate that for non-linear hysteretic structures compliance of the soil foundation may lead to larger displacements than would occur if the base were rigid. This behaviour differs from that generally observed for linear systems, for which the effect of soil-structure interaction is to reduce the rigid-base response.  相似文献   

12.
张昊  康帅  王自法    裴笑娟 《世界地震工程》2022,38(2):029-37
目前结构的抗震分析主要是采用刚性地基假定,忽略了土-结构相互作用,而在实际情况中结构的地震破坏与刚性地基假定的预期结果并不相同。为了对比差异,本文以一6层混凝土框架结构为例,分别进行了Pushover分析和非线性时程分析。结果表明:当考虑土-结构相互作用时,结构的基底剪力减小,周期增大,顶点位移增大且结构的破坏主要集中在首层,柱端出现了塑性铰,更符合实际的震害情况。并将Pushover分析与非线性时程分析的结果进行对比,验证了Pushover分析的可靠性。  相似文献   

13.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Solutions for the displacements caused by dynamic loads in a viscoelastic transversely-isotropic medium are derived. The medium extends horizontally to infinity, but is bounded below by a rigid base. Stratification of the medium presents no difficulties. The medium is discretized in the vertical direction only; discretization in the horizontal direction is obviated by use of analytical solutions to the equations of motion. Application of the displacement solutions to soil-structure interaction is illustrated. A soil flexibility matrix (and hence, a stiffness matrix) for a surface foundation follows directly from the displacement solutions. A simple modification to obtain the soil stiffness for an embedded foundation of arbitrary geometry is described. Stiffnesses of rigid surface and embedded foundations are computed and compared with previously published results. In addition, the dynamic stiffness of a rigid surface foundation on a soil layer with linearly increasing shear modulus is compared to that for a homogeneous soil layer. A reduction in radiation damping is found to result from the inhomogeneity.  相似文献   

15.
确定结构基底等效输入地震动的简化方法   总被引:1,自引:0,他引:1  
本文用理论和实例计算分析了土与结构间的动力相互作用。根据基底等效输入的地震动相对入射地震动的传递函数特点研究出了一种等效输入的方法,该方法比较好地反映了场地和结构的动力特性对基底等效输入的影响。为利用刚性基底假设理论来分析土-结构动力相互作用提供了一种方法。  相似文献   

16.
An approximate method is proposed for the scattering of SH-waves by foundations of irregular shape and the resulting soil-structure interaction problems. The scattering of elastic waves by the rigid foundation embedded in half-space is solved approximately by using integral representation of the wave equation. The procedure is the Born approximation which has been widely used in quantum mechanics for collision and scattering theory though not well-known in elastodynamics. This paper extends the previous work of the authors on the scattering of waves to account for soil-structure interaction. The motion of the foundation is evaluated by the balance of momentum under stresses due to the incident waves as well as the waves generated by its own motion and the forces coming from the superstructure. The model investigated consists of an infinitely long elastic shear wall of height H and thickness h erected on a rigid infinitely long foundation. Results are presented for the cases with circular, elliptical and rectangular foundations. For a circular foundation, excellent agreement is found with the exact solutions for the foundation displacement and the relative displacement between the top and bottom of the structure for the entire range of wave numbers. For an elliptical foundation, accuracy decreases with increasing wave numbers. Foundation displacements are compared for foundation shapes that are shallow elliptical, deep elliptical, rectangular and circular. It is observed that foundation displacements are dependent on the angle of incidence except for a semi-circle. The results on the details of the scattered field are, however, not as accurate.  相似文献   

17.
本文根据边界元方法建立了位不规则场上刚体的动阻抗和在入射平面波作用下的有效输入运动的分析模型,分析模型考虑了不规则场地和基础对入射波的散射作用以及土与基础的相互作用,通过验证确认了本方法的正确性,文中计算了凹陷,高地和盆地三种不规则场地土不同条件基础的动阻和有效输入的运动,并与半空间地基上相应基础的情况作了对比,计算表明,当基础尺寸与不规则场地范围可比时有必要用本文模型分析不规则场地的影响和土一结  相似文献   

18.
本文设计并完成了考虑土与结构相互作用的结构减震控制大型振动台模型试验。通过对四种结构形式的对比试验,探讨了土与结构相互作用(SSI)效应对结构地震反应的影响以及调谐质量阻尼器(TMD)在刚性和柔性地基条件下对主体结构的减震效应。通过比较同一地震动作用下主体结构在刚性和柔性两种地基条件下的地震反应,可知:SSI效应具有降低和提高结构减震控制效果的双重作用,其综合效果与输入地震动的频谱特性、加速度峰值大小有关。由于SSI效应在结构地震反应中发挥着双重的作用,因而使得基于刚性地基假定下设计的TMD减震控制系统在柔性地基条件下的控制效果不太理想,甚至会出现负面效应。本文还探讨了在柔性地基条件下影响结构减震控制效果的一些因素。  相似文献   

19.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The distortions of earthquake ground motions recorded in small instrument shelters as a result of soil-structure interaction effects are investigated by means of a theoretical parametric study. A total of 12 foundation geometries varying in basal radius, embedment depth and extension above the ground surface and a number of soil profiles including uniform and layered soil models were considered. The results obtained show significant amplification and deamplification of the free-field ground motion for sufficiently soft soils (β<200 m/sec) and sufficiently high frequencies (f>20 Hz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号