首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The upper Kaimur Group (UKG) of the Vindhyan Supergroup in central India, primarily consists of three rock types-Dhandraul sandstone, Scarp sandstone and Bijaigarh shale. The present study aims to reconstruct the parent rock assemblages, their tectonic provenance, mineralogy, weathering intensity, hydraulic sorting and depositional tectonic setting. Samples from the UKG rocks representing the Dhandraul sandstone, Scarp sandstone and Bijaigarh shale were studied using a combination of petrographic, mineralogical, and geochemical techniques. Texturally, medium to coarse grained UKG sandstones are mature and moderate to well sorted. Deficiency of feldspars in these sandstones indicates that the rocks are extensively recycled from distant sources. Their average modal composition for Scarp (avg. Qt99 F0.2L0.8) and Dhandraul (avg. Qt99 F0.1L0.8) sandstones, classifies them as quartz arenite to sub-litharenite types, which is consistent with geochemical study. Major element concentrations revealed that sandstones have high SiO2, K2O < Na2O, and low Fe2O3, which are supported by the modal data. On the other hand, sandstone samples are enriched in most trace elements such as Ce, Sr, V, Sc and Zr and depleted in U and Th. The CIA values (43.17–76.48) of the UKG rocks indicate low to moderate weathering, either of the original source or during transport before deposition, which may have related to low-relief and humid climatic conditions in the source area. Further, petrographic and geochemical interpretations indicate that they are derived from craton interior to quartzose recycled sedimentary rocks and deposited in a passive continental margin. Therefore, granitic and low grade metamorphic rocks of Mahakoshal Group and Chotanagpur granite-gneiss, situated on the southern and south-eastern side of the Vindhyan basin are suggested as possible provenance for the UKG rocks.  相似文献   

2.
The provenance and tectonic setting of sandstones from the Bombouaka Group of the Voltaian Supergroup, in the northeastern part of Ghana, have been constrained from their petrography and whole-rock geochemistry. Modal analysis carried out by point-counting sandstone samples indicates that they are quartz arenites. The index of compositional variability values and SiO2/Al2O3, Zr/Sc, and Th/Sc values indicates that the sediments are mature. The sandstones are depleted in CaO and Na2O. They are, however, enriched in K2O, Ba, and Rb relative to average Neoproterozoic upper crust. These characteristics reflect intense chemical weathering in the source region as proven by high weathering indices (i.e., CIA, PIA, and CIW). In comparison with average Neoproterozoic upper crust, the sandstones show depletion by transition metals and enrichment by high field strength elements. They generally show chondrite-normalized fractionated light rare-earth element (LREE) patterns (average LaN/SmN = 4.40), negative Eu anomalies (average Eu/Eu* = 0.61), and generally flat heavy rare-earth elements (HREE) (average GdN/YbN = 1.13). The sandstones have La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr, and Eu/Eu* ratios similar to those of sandstones derived from felsic source. Mixing calculations using the rare-earth elements (REE) suggests 48% tonalite–trondhjemite–granodiorite and 52% granite as possible proportions for the source of the sandstones. Both the petrographic and whole-rock geochemical data point to a passive margin setting for the sandstones from the Bombouaka Group.  相似文献   

3.
The provenance of the Upper Cretaceous Nubia sandstones from four vertical sections along Qena-Safaga and Qena-Quseir roads in central Eastern Desert of Egypt was investigated based on their modal composition and geochemical data. The Nubia sandstone samples are abundant in quartz content with low feldspar and lithic fragments. Their average modal composition (Q94.2F1.3R4.5) classifies them as quartz arenites with subordinate quartz wackes which is consistent with geochemistry data. The average CIA, CIW, PIA, and Th/U ratio values revealed that the intensity of weathering in the studied areas was similar, varying from moderate to intensive weathering, and may reflect low-relief and warm humid climatic conditions in the source area. The ICV (<?1) and SiO2/Al2O3 ratio (>?5) indicate that the Nubia sandstones are texturally and mineralogically mature. The petrographical and geochemical analyses suggest that the Nubia sandstones were mainly derived from felsic (granitic) and/or recycled sand sources. The major element-based multidimensional tectonic discrimination diagrams suggested the Nubia sandstones were deposited in a passive continental margin of a syn-rift basin. This result agreed with the general geology of central Eastern Desert of Egypt during the Upper Cretaceous.  相似文献   

4.
Petrography and bulk rock geochemistry of the Middle Miocene sandstones of the lower and upper members of Gebel El Rusas Formation along the Egyptian Red Sea Coastal plain, have been investigated to determine the provenance, tectonic setting, and weathering condition of this formation. The Lower Member is formed mainly of sandstones and conglomerates with clay interbeds. The Upper Member is more calcareous and formed mainly of sandstones and limestones with marls and clays intercalations. Petrographically, the Lower Member sandstones are mostly immature and classified as arkoses with an average framework composition of \(\hbox {Q}_{66}\hbox {F}_{29}\hbox {R}_{5}\), and the Upper Member sandstones are partly submature (more quartzose, less feldspathic) and classified as subarkoses with an average framework composition of \(\hbox {Q}_{80}\hbox {F}_{17}\hbox {R}_{3}\). The Gebel El Rusas sandstones are enriched in Sr, Ba, Zr and Rb and depleted in Co and U, as compared to UCC. The chemical index of alteration (CIA) values suggest moderate weathering conditions. The geochemistry results revealed that the Gebel El Rusas sandstones were derived from felsic-granitic source rocks and deposited in a passive margin of a synrift basin. The inferred tectonic setting for Middle Miocene Gebel El Rusas sandstones in the study area is consistent with the regional geology of the Eastern Desert of Egypt during Middle Miocene.  相似文献   

5.
Whole rock major, trace and rare earth element (REE) compositions of Paleogene to Neogene sedimentary rocks of the NW shelf succession (Province 1) of Bangladesh contain a record of interaction of the India and Asian plates, Himalayan tectonism, and climatic development. Analyses of 66 sandstones and mudrocks from the Tertiary succession of Bangladesh were made to examine provenance, source weathering, and the influence of paleoclimate and tectonism. The sediments display linear geochemical trends due to quartz dilution, and varying quartz–clay ratios produced by hydrodynamic sorting. Chondrite-normalized REE patterns for both sandstones and mudrocks from different groups are similar to upper continental crust, with moderate to high LREE enrichment (lithotypes within formations average LaN/YbN 5.31–11.41) and marked negative Eu anomalies (Eu/Eu* 0.51–0.69). Based on geochemical criteria the succession can be divided into three parts (Jaintia; Barail–Surma; and Dupi Tila). Very high silica contents in Jaintia Tura sandstones and high Chemical Index of Alteration (CIA) indices in Kopili mudrocks (Fe-shales) suggest derivation from a deeply weathered and stable cratonic source (India). The Tura sandstones are interpreted as first-cycle quartz arenites, produced while the Indian plate drifted across equatorial regions during the Paleocene–Eocene Thermal maximum (PETM). The Barail–Surma and Dupi Tila sediments were derived from a felsic orogen (the Himalaya). The Barail–Surma sediments were mainly derived from the Trans Himalayan Batholith and associated granitoids, with significant contribution from the Lesser Himalaya. Mafic input is also evident, probably from intraoceanic arc material within the Himalaya. Barail mudrocks have uniformly high CIA values (92–95), suggesting intense steady-state weathering of their proto-Himalayan source, and warm and humid climate. In contrast, CIA values of Surma mudrocks range from 66 to 93 (average 84), suggesting non-steady state weathering related to active uplift in the Himalaya. The Dupi Tila sediments were derived from a more felsic Lesser Himalaya source, with significant contribution from the Trans-Himalaya and very little or no ophiolitic or arc material. Dupi Tila mudrocks have CIA ratios of 62–99 (average 72), also indicating non-steady state weathering in the rising Himalayan source. Geochemical compositions of the NW shelf sediments are comparable to coeval successions in the Surma basin (Province 2) of Bangladesh and the Siwaliks (India), indicating similar source. Evolution of the Indian monsoon and associated high precipitation caused intense chemical weathering of the Surma and Dupi Tila source, despite rapid uplift. The Surma Group thus bears the signature of evolution of the Asian monsoon in the Bengal basin at 21 Ma, simultaneous with the development of the East Asian monsoon. This supports proposals that both monsoon systems developed at the same time.  相似文献   

6.
The characteristics of source rocks and weathering of Palaeoproterozoic phyllitic rock of Mahakoshal Group and Mesoproterozoic shales and siliciclastics of Vindhyan Supergroup exposed in Son Valley, Central India have been investigated by analyzing their chemical compositions. The investigations pertaining to the relationship between major-elements were carried out along Parshoi, Chitrangi, and Markundi areas of Son valley, Central, India. The studied rock strata have been classified into three categories namely phyllitic rocks, shales and sandstone.The A-CN-K ternary diagram, CIW, CIA, MIA, and ICV values indicate about the similar provenance or source rocks subjected to severe chemical weathering, under dry and hot-humid climates in a basic and acidic environment with changing lower to higher PCO2 of continental flora. Various geochemical discriminantts diagrams, elemental ratios suggest that rocks are derived from post-Archaean-Proterozoic igneous source. The igneous source was mainly granite with a minor contribution of granodioritic rock, in a passive margin setting. The sediments responsible for formation of shale and sandstones were most likely deposited in the interglacial period in between the Mesoproterozoic and Neoproterozoic glacial times. Compositionally the sandstones is distinctive of cratonic environments with their passive continental margin setting. However, the phyllities of Mahakoshal Group suggests their formation under lower weathering conditions in dry climatic conditions which were operating on more intermediate to basic igneous rocks with abundance of mafic minerals.  相似文献   

7.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

8.
A study was carried out on the combination of petrographies, geochemistry (major and trace), weathering and the digenesis of 31 sandstones samples to determine their provenance and depositional tectonic setting of sedimentary basins. Based on the composition of Detrital grains (point counting), most of the Sarah sandstones were classified as quartz arenites types (99% on an average). The petrographic data indicated that the resultant mature sandstones are derived from recycled and craton interior tectonic provenance. Tectonic setting discrimination diagrams based on major elements suggest that sandstones were deposited in a passive margin and polycyclic continental tectonic setting. The relationship between K2O/Na2O ratio and SiO2 showed that the Sarah sandstone samples fall into the passive margin field. The chemical index of alteration (CIA?=?63.84%) of sandstones suggested moderate weathering or reworking in the area. The concentration of trace elements indicates that the sediments were probably derived from the mixed sedimentary-meta sedimentary provenance and changes in sedimentary process due to climatic variations. The main diagenetic events were in the form of cements, which occur as grain coats and as pore fillings. An integrated approach showed that the parent area of paleovalley-fill sediment is probably a complex of granite, metasedimentary and pre-existing sedimentary rocks.  相似文献   

9.
The Trichinopoly Group (later redesignated as Garudamangalam) has unconformable relationship with underlying Uttatur Group and is divided into lower Kulakanattam Formation and upper Anaipadi Formation. These calcareous sandstones are analysed major, trace and rare earth elements (REEs) to find out CIA, CIW, provenance and tectonic setting. The silica content of fossiliferous calcareous sandstone show wide variation ranging from 12.93 to 42.56%. Alumina content ranged from 3.49 to 8.47%. Higher values of Fe2O3 (2.29–22.02%) and low MgO content (0.75–2.44%) are observed in the Garudamangalam Formation. CaO (23.53–45.90) is high in these sandstones due to the presence of calcite as cementing material. Major element geochemistry of clastic rocks (Al2O3 vs. Na2O) plot and trace elemental ratio (Th/U) reveal the moderate to intense weathering of the source rocks. The Cr/Zr ratio of clastic rocks reveal with an average of 1.74 suggesting of felsic provenance. In clastic rocks, high ratios of \(\sum \)LREE/\(\sum \)HREE, La/Sc, Th/Sc, Th/Co, La/Co and low ratios of Cr/Zr, and positive Eu anomaly ranges from (Eu/Eu* = 1.87–5.30) reveal felsic nature of the source rocks.  相似文献   

10.
The Upper Miocene shales of the Samh Formation, North Marsa Alam along the Egyptian Red Sea coastal plain were analyzed for major and selected trace elements to infer their provenance, weathering intensity, and tectonic setting. The Samh Formation consists of sandstone underlies by shale and marl intercalations. The Samh shales are texturally classified as mudstones. Mineralogically, these shales consist mainly of smectite and kaolinite, associated with non clay minerals (abundant quartz and trace of plagioclase, microcline, and halite). Compared to post-Archaean Australian shales (PAAS), the Samh shales are highly enriched in SiO2, Al2O3, and Fe2O3 and depleted in TiO2, P2O5, Na2O, MgO, and K2O contents. The K2O/Al2O3 ratio values indicate predominance of clay minerals over K-bearing minerals. Trace elements like zirconium (Zr), Cr, Pb, Sc, Rb, and Cs are positively correlated with Al2O3 indicating that these elements are likely fixed in K-feldspars and clays. The Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and Chemical Index of Weathering (CIW) values indicate moderate to intense weathering of the source material in a semiarid climate. The geochemistry results suggest that the Samh shales were deposited in a passive margin of a synrift basin and derived from felsic (granitic) source rocks. The inferred tectonic setting for the Upper Miocene Samh shales in Marsa Alam is in agreement with the tectonic evolutionary history of the Eastern Desert of Egypt during the Upper Miocene.  相似文献   

11.
夏飞勇  焦养泉  荣辉  吴立群  朱强  万璐璐 《地球科学》2019,44(12):4235-4251
沉积物的地球化学成分在沉积岩物源分析及构造背景的研究中具有重要的作用.对研究区4口钻孔中的姚家组砂岩进行了详细的岩石学和地球化学研究,结果显示,砂岩碎屑颗粒石英含量最高,长石次之,岩屑含量最低,平均值分别为42%、37%和21%,具有锆石+钛磁铁矿+石榴子石的重矿物组合,反映源岩以酸性岩浆岩或变质岩为主,Dickinson判别图解表明物源主要来自于大陆物源区;姚家组砂岩的稀土元素以轻稀土富集、重稀土平坦、中度铕负异常为特征.砂岩CIA值为52.02~60.16,平均值为56.69,反映了干燥气候背景下弱的化学风化作用.源岩属性判别图解表明源岩为再旋回的古老沉积物及长英质火山岩.主量、微量和稀土元素的构造背景判别图解综合表明姚家组砂岩物源区为被动大陆边缘构造环境,结合区域构造演化,认为姚家组砂岩的物源为华北克拉通北缘燕山陆内造山带发育的火山-沉积岩系.   相似文献   

12.
The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene–Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene–Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene–Early Miocene, Miocene–Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene–Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene–Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.  相似文献   

13.
ABSTRACT

The distinct basin and range tectonics in Southeast China were generated by crustal extension associated with subduction of the Palaeo-Pacific plate during the late Mesozoic. Compared with adjacent granitoids of the ranges, the redbeds of the basins have not been well characterized. In this article, provenance, source weathering, and tectonic setting of the redbeds are investigated by petrographic and geochemical studies of sandstones from the Late Cretaceous Guifeng Group in the Yongchong Basin, Southeast China. Detrital grains are subangular to subrounded, poorly sorted, and rich in lithic fragments. Variable Chemical Index of Alternation values (59.55–79.82, avg. 66.79) and high Index of Compositional Variability (ICV) values (0.67–3.08, avg. 1.40) indicate an overall low degree of chemical weathering and rapid physical erosion of source rocks. Such features are consistent with an active extension tectonic setting. Other chemical indices (e.g. Al2O3/TiO2, Th/U, Cr/Th, Th/Sc, Zr/Sc) also suggest significant first-cycle sediment input to the basin and a dominant felsic source nature. Thus, the Guifeng Group possibly underwent moderate to low degrees of weathering upwards. Sandstone framework models and geochemical characteristics suggest the provenance was likely a combination of passive margin (PM) and active continental margin (ACM) with minor continental island arc (CIA) tectonic settings. Sediment derivation from Neoproterozoic metamorphic rocks and Cambrian to Triassic granitoids indicates PM provenance, whereas sediments derived from Jurassic to Cretaceous granitoids suggest ACM and CIA nature. Therefore, the Late Cretaceous redbeds were deposited in a dustpan-like half-graben basin under the back-arc extension regime when Southeast China was possibly influenced by northwestward subduction of the Palaeo-Pacific plate beneath East Asia.  相似文献   

14.
Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L= 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (~ 67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.  相似文献   

15.
《International Geology Review》2012,54(10):1196-1214
ABSTRACT

The distinct basin and range tectonics in southeast China were generated in a crustal extension setting during the late Mesozoic. Compared with the adjacent granitoids of the ranges, the redbeds of the basins have not been well characterized. In this article, provenance, source weathering, and tectonic setting of the redbeds are investigated by petrographic and geochemical studies of sandstone samples from the Late Cretaceous Guifeng Group of the Yongchong Basin in the Gan-Hang Belt, southeast China. Detrital grains are commonly subangular to subrounded, poorly sorted, and are rich in lithic fragments. The variable pre-metasomatic Chemical Index of Alternation (CIA* = 62–85), Chemical Index of Weathering (CIW = 70.90–98.76, avg. 85.62), Plagioclase Index of Alteration (PIA = 60.23–98.35, avg. 79.91), and high Index of Compositional Variability (ICV = 0.67–3.08, avg. 1.40) values collectively suggest an overall intermediate degree of chemical weathering and intense physical erosion of the source rocks, but a relatively decreased degree of chemical weathering during the late stage (Lianhe Formation) of the Guifeng Group is observed. Several chemical ratios (e.g. Al2O3/TiO2, La/Th, Cr/Th, Th/Sc, Zr/Sc) also suggest a dominant felsic source nature, significant first-cycle sediment supply, and low sedimentary recycling. Such features are consistent with active extension tectonic setting. Sandstone framework models and geochemical characteristics suggest the provenance is related to passive margin (PM), active continental margin (ACM), and continental island arc (CIA) tectonic settings. Sediment derivation from the Neoproterozoic metamorphic rocks and Silurian–Devonian granites indicates a PM provenance, whereas sediments derived from the Early Cretaceous volcanic-intrusive complexes suggest an ACM and CIA nature. Therefore, the Late Cretaceous redbeds were deposited in a dustpan-like half-graben under the back-arc extension regime when southeast China was possibly influenced by northwestward subduction of the Palaeo-Pacific plate beneath East Asia.  相似文献   

16.
中元古代常州沟组是华北克拉通北缘燕山地区变质结晶基底上的第一套沉积盖层,不整合覆盖于新太古代各类片麻岩之上。为了解常州沟组时期的古环境、古气候及其物质来源、构造环境和盆地性质,在野外地质调查的基础上,对常州沟组砂岩进行了粒度分析和地球化学分析测试。岩石组合、沉积构造和粒度分析结果指示区内常州沟组沉积环境演化由下至上依次为冲积扇、辫状河和碎屑潮坪。常州沟组砂岩地球化学特征具有高SiO2、Al2O3和K2O,低TiO2、Fe2O3、FeO、MgO含量的特点,成熟度较高,化学蚀变指数(CIA)介于52.00~73.23之间,化学风化作用指数(CIW)范围为93.04~98.68。由于岩石遭受钾交代作用影响,结合A-CN-K图解、Th/U-Th图解和古气候判别图综合分析,认为源区可能经历了较强的风化作用,古气候温暖、潮湿。Cr/Zr、Th/Sc、Ba/Sr、Rb/Sr值和La/Th-Hf图解指示常州沟组源区属性主要为上地壳环境,原岩成分以长英...  相似文献   

17.
出露于羌塘盆地沃若山地区的雀莫错组砂岩是北羌塘盆地早侏罗世的沉积物,对研究早侏罗世沉积盆地的演化特征具有重要的意义。通过对其地球化学特征的分析研究,结果表明该组砂岩为被动大陆边缘裂陷期的沉积产物,岩性主要为岩屑砂岩,岩石矿物成分主要在钾长石、斜长石、伊利石、绿泥石以及石英之间变化。化学风化作用指标(CIW)、化学蚀变作用指标(CIA)和A-CN-K图解,反映该组砂岩的碎屑成分受到了强烈的风化环境,并在风化过程中发生钾交代作用,长石发生伊利石化。化学组分指标(ICV)表明岩石碎屑为近源的第一次旋回沉积物,受沉积分选和再循环作用影响不大;A-CN-K图解还反映出砂岩碎屑源岩中斜长石含量高于钾长石含量,主要在花岗岩和花岗闪长岩之间变化;稀土元素特征表明该组砂岩具有同源性,其成分主要受源区岩石成分控制,为酸性火山岩类。  相似文献   

18.
In the Kachchh Mainland, the Jumara Dome mixed carbonate-siliciclastic succession is represented by the Jhurio and Patcham formations and siliciclastic-dominating Chari Formation (Bathonian to Oxfordian). The Ju- mara Dome sediments were deposited during sea-level fluctuating, and were interrupted by storms in the shallow marine environment. The sandstones are generally medium-grained, moderately sorted, subangular to subrounded and of low sphericity. The sandstones are mineralogically mature and mainly composed of quartzarenite and subar- kose. The plots of petrofacies in the Qt-F-L, Qm-F-Lt, Qp-Lv-Ls and Qm-P-K ternary diagrams suggest mainly the basement uplift source (craton interior) in rifted continental margin basin setting. The sandstones were cemented by carbonate, iron oxide and silica overgrowth. The Chemical Index of Alteration values (73% sandstone and 81% shale) indicate high weathering conditions in the source area. Overall study suggests that such strong chemical weathering conditions are of unconformity with worldwide humid and warm climates during the Jurassic period. Positive correlations between A1203 and Fe203, TiO2, Na20, MgO, K20 are evident. A high correlation coefficient between A1203 and K20 in shale samples suggests that clay minerals control the major oxides, The analogous con- tents of Si, A1, Ti, LREE and TTE in the shale to PAAS with slightly depleted values of other elements ascribe a PAAS like source (granitic gneiss and minor mafics) to the present study. The petrographic and geochemical data strongly suggest that the studied sandstones/shales were deposited on a passive margin of the stable intracratonic basin.  相似文献   

19.
Petrographic and geochemical analyses of three Cretaceous lithostratigraphic sandstone units were undertaken to constrain their provenance and tectonic setting. Petrographic analysis showed that there are differences in composition between the three sandstone bodies, which can be attributed to differences in provenance relief, transport distance and geology of the terrain. Composition of the three lithostratigraphic sandstone bodies fall within the craton interior field.
Framework mode and chemical features indicated their derivation from basaltic volcanics, source rocks during the early rifting stage, and felsic, intermediate and mafic igneous source rocks located at the southeast basement complex terrain, with minor sedimentary components from the uplifted and folded older Cretaceous strata.
The chemical composition of the sandstones is mainly related to source rocks, chemical weathering conditions and transport agents. The source rocks were derived mainly from the southeastern Precambrian basement of Nigeria. Through examination of the sandstones, the tectonic setting was modeled. The Benue Trough belongs to a continental sedimentary basin of the passive margin type.
The tectonic evolution from Albian to Maastrichtain of the trough is contributed to the difference in framework mode and chemical composition of the sandstones. The evolution of the basin was reconstructed in terms of sandstone petrology and geochemistry. The tectonic evolution can be subdivided into three stages from the petrology and geochemistry data. The first stage covers Albian; the second stage the Turonian-Coniacian, and the third stage the Campanian-Maastrichtain. These are the three mega discontinuities in the sandstone composition among these three stages. These three discontinuities signify the influence of tectonism.  相似文献   

20.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号