首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Gas chromatography and other analytical techniques (EMR, PMR, and IR spectroscopy) were used to examine volatile components (CH4, C2-C3, CO2, CO, H2, H2O, and others) in alkaline rocks and minerals from the Ukrainian Shield (eight massifs and dikes of grorudites) and from the Khibina and Lovozero massifs in the Baltic Shield. The alkaline rocks from the Ukrainian Shield are mostly of Proterozoic (1.7–2.1 Ga) age. The alkaline rocks from the Kola Peninsula were confirmed to be rich in methane (21 ± 14 μl/g on average) and other hydrocarbons, whereas the analogous rocks from the Ukrainian Shield are poor in methane (2.1 ± 1.6 μl/g on average at a maximum of 14 μl/g). The latter rocks are richer in CO2, which is one of the major volatile components of alkaline rocks, including agpaitic nepheline syenites from the Kola Peninsula. The rocks from the Ukrainian Shield often have elevated contents of nitrogen (up to 20 μl/g). The reasons for the differences in the composition of volatile components of rocks from the Kola Peninsula and Ukrainian Shield are as follows: the agpaitic crystallization trends of large massifs in the Kola Peninsula and much less clearly pronounced agpaitic trends in the small massifs in the Ukrainian Shield, the affiliation of these rocks with different complexes, the deeper erosion levels of the Ukrainian alkaline massifs, different ages of these rocks, etc.  相似文献   

2.
We present new geochemical data on alkali and nepheline syenites from various complexes of different age within the Ukrainian Shield. The results reveal a correlation between the content of trace elements in the syenites, their assignment to a particular rock complex, the chemistry of primary melts, and the degree of their differentiation. The data also suggest regional geochemical heterogeneity in the ultramafic-alkaline complexes of the Ukrainian Shield. The alkali and nepheline syenites in the ultramafic-alkaline massifs from the eastern and western parts of the region exhibit similar REE contents and Eu/Eu* ratios but are markedly different in Nb, Ta, Zr, and Hf content and are of the miaskitic type. These rocks have lower REE, Nb, and Zr and higher Sr and Ba compared with early foidolites. The rocks of the gabbro-syenite complexes define a distinct Fe-enrichment fractionation trend from early syenitic intrusions to more differentiated varieties; they are also characterized by lower Sr, Ba, and Eu/Eu* and significantly lower contents of some major elements, e.g., Ti, Mg, and P. The agpaitic index and concentrations of Zr, Nb, Y, and REE increase in the same direction. A similar geochemical feature is observed in the alkali syenites genetically associated with anorthositerapakivi-granite plutons, which show incompatible-element enrichment and strong depletion in Sr and Ba. The distinctive evolutionary trends of alkali and nepheline syenites from different rock complexes of the Ukrainian Shield can be explained by different mechanisms of their formation. The main petrogenetic mechanism controlling the distribution of trace elements in the rocks of ultramafic-alkaline complexes was the separation of parent melts of melanephelinite and melilitite types into immiscible phonolite and carbonatite liquids. The gabbro-syenite complexes and alkali syenites from anorthosite-rapakivi granite plutons evolved via crystallization differentiation, which involved extensive feldspar fractionation.  相似文献   

3.
In most alkaline-ultrabasic-carbonatite ring complexes, the distribution of trace elements in the successive derivatives of mantle magmas is usually controlled by the Rayleigh equation of fractional crystallization in accordance with their partition coefficients, whereas, that of late derivatives, nepheline syenites and carbonatites, is usually consistent with trends characteristic of silicate-carbonate liquid immiscibility. In contrast to the carbonatites of ring complexes, carbonatites from deep-seated linear zones have no genetic relation with alkaline-ultrabasic magmatism, and the associated alkaline rocks are represented only by the nepheline syenite eutectic association. The geochemical study of magmatic rocks from the Vishnevye Gory nepheline syenite-carbonatite complex (Urals), which is assigned to the association of deep-seated linear zones, showed that neither differentiation of a parental melt nor liquid immiscibility could produce the observed trace element distribution (Sr, Rb, REE, and Nb) in miaskites and carbonatites. Judging from the available fragmentary experimental data, the distribution patterns can be regarded as possible indicators of element fractionation between alkaline carbonate fluid and alkaline melt. Such trace element distribution is presumably controlled by a fluid-melt interaction; it was also observed in carbonatites and alkaline rocks of some ring complexes, and its scarcity can be explained by the lower density of aqueous fluid released from magma at shallower depths.  相似文献   

4.
Anorogenic magmatic complexes were formed during protoplatformal evolution of the Keivy structure. This evolution ended with development of aluminous schists, which were derived by deep disintegration and redeposition of the rocks from the lower parts of the sequence and surrounding of the structure. The anorogenic rocks of the region are represented by the following magmatic complexes: gabbro-labradorite-latite-monzonite-granites; ophitic gabbro and gabbrodiabases; quartz syenite-alkaline granites; alkaline and nepheline syenites. The magmatic activity of this period, starting from the emplacement of gabbrolabradorite massifs and ending with alkaline and nepheline syenite bodies, was caused by ascent of mantle asthenolith, which destructed the Earth’s crust basement in this area. The anorogenic magmatism of the Keivy structure lasted for no more than few or few tens of million years. The granitoid subcomplex of the gabbro-labradorite-latite-monzonite-granite complex is dated at 2674 ± 6 Ma, which is comparable with an age of alkaline granites of the Ponoy and Beliye Tundry massifs (2673 ± 6 Ma). The considered complexes are separated in time by intrusion of amphibole-biotite plagiomicrocline granites with an age of 2667 ± 8 Ma. Gabbrolabradorites of the Shchuch’e Ozero and Tsaga massifs have close ages (2663 ± 7 and 2668 ± 10 Ma, respectively, Bayanova, 2004), but were formed earlier than granitoids (Bayanova, 2004). Formation of alkaline syenites of the Sakharijok I Massif, which finalized the Neoarchean anorogenic magmatism of the region, falls in the same interval. During Paleoproterozoic transformations, the rocks of the Keivy structure were sheared and uranium was introduced in the contact zones of the alkaline granite massifs, which caused formation of palingenetic melts and subsequent formation of pegmatites in the outer contact zones of the granite bodies.  相似文献   

5.
Earlier, a belt of alkali-granite plutons and a carbonatite province were discovered in the South Gobi Desert, Mongolia. The Lugingol pluton of pseudoleucitic syenites with carbonatites was assigned to the alkali-granite belt. However, new dating showed that it is 40 Myr younger than the Khan-Bogdo pluton and a large fault separates it from the alkali-granite belt. In the same part of the South Gobi Desert, a dike series of alkaline K-shonkinites with a rare-metal carbonatite vein was found by V.I. Kovalenko west of the Lugingol pluton, near Mt. Baruun Hasar Uula, and a dike series of alkali and nepheline syenites was found by us northeast of the Lugingol pluton. These data give grounds to distinguish an intrusive complex of K-alkaline shonkinites and leucitic syenites with Late Paleozoic REE-bearing carbonatites. Thus, three alkaline-rock complexes of different ages are distinguished in the South Gobi Desert. We present refined geological maps of these complexes. The plutons of all three complexes are deposits of trace elements (REE, Nb, Zr, Y, P). The chemical composition of the silicate rocks of the complex, rare-metal agpaitic pegmatites, and carbonatite and apatite rare-metal ores was considered in detail. Shonkinites from Mt. Baruun Hasar Uula and the Mountain Pass mine (United States) and their carbonatites, along with the Lugingol carbonatites, belong to a single association of K-alkaline rocks and carbonatites, as evidenced by their identical chemical, mineral, and geochemical rare-metal compositions. Rare-earth element patterns and spidergrams show similarities and differences between the rare-metal rocks of three complexes as well as paragenetic differences between their rare-metal minerals. A rare process is described—the amorphization of rare-metal minerals, related to their high-temperature crystallization in a medium with abnormal silica contents of the Khan-Bogdo pegmatites. The parental magmas of the alkali-carbonatite complexes were generated from the EM-2 contaminated mantle that had undergone recycling, whereas the parental magmas of the Khan-Bogdo agpaitic alkali granites were produced from depleted mantle.  相似文献   

6.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   

7.
The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10?4%U and 916 × 10?4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.  相似文献   

8.
Doklady Earth Sciences - In the northern part of the Siberian Platform, east of the Anabar Shield, several massifs of alkaline rocks with carbonatites identified (Tomtor, Bogdo, Promezhutochnyi)...  相似文献   

9.
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.  相似文献   

10.
U. Kramm  L. N. Kogarko 《Lithos》1994,32(3-4):225-242
Nd and Sr compositions of the highly evolved agpaitic nepheline syenites and associated ijolites and carbonatites from the Khibina and the Lovozero alkaline centres define three magma sources. Isotopes of the voluminous nepheline syenites and ijolites of Khibina intrusions III, IV, V, VI and VII as well as of nepheline syenites of Lovozero lie on the Kola Carbonatite Mixing Line which is close to the “mantle array” defined by the components “bulk earth” and “prema” on a Sr---Nd plot. The Khibina carbonatites and associated silicate rocks of intrusion VIII, which have more radiogenic Sr, did not evolve from the same parent magma as the nepheline syenites.

Isotopic constraints exclude a pre-enrichment of Rb, Sr, Sm and Nd in the lithospheric mantle below Kola over more than 10 Ma prior to the crystallization of the magmas. A formation of the melts involving major participation of the Precambrian crust of the Baltic Shield is also excluded.

The lack of significant Eu anomalies in the Lovozero nepheline syenites gives evidence that the agpaitic magmas in the Kola region did not form from basaltic liquids by fractional crystallization of plagioclase or anorthoclase at crustal levels. A formation from nephelinite or nepheline benmoreite magmas at mantle pressures is more likely, possibly by dynamic flow crystallization.

Enrichment factors suggest that large-ion lithophile and high field-strength elements as Ta, La, Nb and Zr, which are highly concentrated in the agpaites, were scavenged from mantle volumes of some 100,000 km3. An enrichment of these elements prior to magma formation may have been performed by volatile transfer.

The well-defined whole-rock isochrons of the Khibina III–VII and the Lovozero agpaites of c. 370 Ma date the magma separation for the different intrusion, if these melts are cogenetic and formed by fractional crystallization in a Khibina and a Lovozero magma chamber. If, however, Rb and Sr were collected by a process of volatile transfer, and the initial Sr isotopic compositions of the two distinguished agpaite suites are, therefore, averages of the sampled mantle volumes, the Rb---Sr whole-rock isochron ages of c. 370 Ma would date this process of element collection. The concordance of the whole-rock ages with the mineral ages of Khibina and Lovozero samples is then further evidence for the short period between magma genesis, intrusion and crystallization.  相似文献   


11.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

12.
The igneous alkaline rocks at Elchuru start from a parent ijolite-melteigite association to basic malignite, melalusitanite and shonkinite followed by nepheline syenites and then biotite lamprophyres (as dykes) at the waning phase of the evolutionary course of the complex. The distinct alkalinity of the rocks is manifested by the development of modal nepheline and calcic amphibole (kaersutite). For both the basic rocks,i.e. alkali gabbro and biotite lamprophyre, the percentages of normative nepheline are always higher than modal nepheline, indicating silica deficiency and alkali enrichment of the mafics. It is evident from detailed petrological and geochemical studies that the two basic members are very much akin to each other and there is no major deviation in their bulk chemistry.  相似文献   

13.
This paper studies the petrology of K-alkaline lamproite-carbonatite complexes, which are widespread in Siberia. They are exemplified by the Murun and Bilibino massifs in West and Central Aldan. In these massifs, the entire range of differentiates was first found, from K-ultrabasic-alkalic rocks through basic and intermediate ones to alkali granites and unique residual calc-silicate rocks (benstonite Ba-Sr carbonatites and charoite rocks). Also, intrusive equivalents of lamproites occur in these massifs, and the Murun massif was probably formed from highly differentiated lamproite magmas. In many K-alkaline complexes, silicate and silicate-carbonate magma layering takes place. Stages of magmatism are described for both massifs. Binary and ternary petrochemical diagrams exhibit the same compositional trend from early to late rocks.In this paper, lamproites are considered from the chemical point of view; their diagnostic properties are described in terms of chemical and mineral composition. From geological, petrological, and geochemical data, formational analysis of alkaline complexes was performed, four formational types of world lamproites were first identified, and diamond content criteria were developed for them.The carbonatite problem was studied from the petrological point of view, and four formational types of carbonatites were identified using geological, geochemical, and genetic criteria. It has been suggested that for dividing carbonatite complexes into four formational types the following criteria be used: the alkalinity type (Na or K) of alkalic rocks in the complex and the time when the carbonatite liquid separates from silicate melts in different stages of primary magma differentiation. These linked parameters influence the ore content type of carbonatite complexes.A formation model for K-alkaline carbonatite complexes is given, and the Tomtor alkaline carbonatite massif with tuffaceous rare-metal ores is described to prove that they have ore reserves. The geochemistry of C, O, Sr, and Nd isotopes shows that K-alkaline complexes, depending on their geotectonic setting, can originate from three types of mantle sources: depleted mantle, enriched mantle 1 (EM1), and enriched mantle 2 (EM2). It is concluded that ore-bearing ultrabasic-alkaline complexes of lamproites and carbonatites can melt out of different types of mantle, whose composition only slightly influences their ore content. Apparently, the main factors are the low degree of selective mantle melting (less than 1%) and plumes supplying fluid and alkaline components, which stimulate this melting. Later on, the processes important for the accumulation of ore and trace elements are long-term magma differentiation and its layering during crystallization.  相似文献   

14.
Carbonate-rich, SiO2-poor residua are developed in some kimberlites solidifying as ocelli, layers, or discrete dikes which satisfy petrographic definitions of carbonatite. Arguments that these rocks have mineralogies, antecedents, and comagmatic rocks differing from those of the carbonatites in alkaline rock complexes, including the specific observation that kimberlites and carbonatites contain ilmenites and spinels of different composition, have been used to refute the alleged kimberlite-carbonatite relationship. New microprobe analyses of ilmenites and spinels from carbonate-rich rocks associated with kimberlites in three South African localities correspond to spinels and ilmenites of carbonatites from alkalic complexes, or have characteristics intermediate between those of carbonatites and kimberlites. The ilmenites are distinguished from kimberlite ilmenites by higher MnO, FeTiO3, and Nb2O5, and by negligible Cr2O3. The spinels are distinguished from kimberlite spinels by their Al2O3 and Cr2O3 contents. There is clearly a genetic relationship between the kimberlites and the carbonate-rich rocks, despite the observation that their ilmenites and spinels are distinctly different, which indicates that the same observation is not a valid argument against a petrogenetic relationship between kimberlites and carbonatites. These rocks are among the diverse products from mantle processes influenced by CO2, and we believe that the petrogenetic links among them are forged in the upper mantle. We see insufficient justification to deny the name carbonatite to carbonate-rich rocks associated with kimberlites if they satisfy the petrographic definition in terms of major mineralogy.  相似文献   

15.
The behavior of tantalum in carbonatites and related rocks of alkaline complexes was analyzed. In particular, we considered factors favorable for its accumulation in carbonatites, both in absolute amount and relative to its companion element niobium.The contents of both elements show moderate variations in earlier alkaline silicate rocks and more significant variations in carbonatites; this difference is especially pronounced for tantalum.Their simultaneous accumulation in carbonatites is controlled mainly by the affiliation to certain temperature facies, when tantalate-niobate phases with high Ta2O5 contents (up to 26 wt %) are formed. The accumulation of these elements with the formation of almost purely niobian pyrochlores and Ta-U pyrochlores (hatchettolites) occurs efficiently only during the formation of metasomatic zoning with the separation of purely Nb and Nb-Ta mineralization between the zones of the metasomatic column. This process is characteristic mainly of relatively deep-seated massifs, where the metasomatic processes of carbonatite formation are dominant, at least for the given temperature facies.  相似文献   

16.
Malignites from the Poohbah Lake complex of northwestern Ontario, Canada are melanocratic cumulates. Cumulus pyroxene and apatite are poikilitically enclosed in a groundmass of large plates of intercumulus orthoclase and nepheline. Nepheline-feldspar fingerprint-like intergrowths occur. Nephelines are commonly zeolitized and pyroxenes altered to aggregates of biotite and/or garnet by deuteric alteration. Pyroxenes are weakly zoned from Di71 Hd18Ac11 to Di63Hd22Ac15, and are similar to the least evolved pyroxenes of other alkaline rocks. Nephelines all have compositions within the Morozewicz-Buerger convergence field and feldspars have a limited compositional range from Or88 to Or95. Perthites are absent.Inconsistancies in the usage of the terms malignite and juvite are discussed and it is considered that a non-genetic petrographic classification of nepheline syenites leads to the obscuration of a group of potassic nepheline syenites, characterized by the presence of nepheline plus orthoclase which are typically associated with saturated to over-saturated alkaline rocks, contain pseudo-leucite or nepheline-orthoclase intergrowths, are emplaced in mobile belts and are not associated with rocks of the ijolite-carbonatite suite.A genetic classification of nepheline syenites is suggested and it is proposed that; (1) mafic-rich nepheline syenites be referred to as mela-nepheline syenites (sensu lato) rather than as malignites; (2) the term malignite be used for magmatic potassic nepheline syenites characterised by the presence of nepheline plus a single potassium-rich feldspar (orthoclase or microcline) and devoid of exsolution perthite under subsolvus conditions; (3) the metasomatic malignites and juvites of ijolite-carbonatite complexes be referred to as varieties of fenites.  相似文献   

17.
The Burpala alkaline massif is a unique geological object. More than 50 Zr, Nb, Ti, Th, Be, and REE minerals have been identified in rare-metal syenite of this massif. Their contents often reach tens of percent, and concentrations of rare elements in rocks are as high as 3.6% REE, 4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th, and 0.1% U. Geological and geochemical data show that all rocks in the Burpala massif are derivatives of alkaline magma initially enriched in rare elements. These rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite. The extreme products of magma fractionation are rare-metal pegmatites, apatite-fluorite rocks, and carbonatites. The primary melts were related to the enriched EM-2 mantle source. The U-Pb zircon ages of pulaskite (main intrusive phase) and rare-metal syenite (vein phase) are estimated at 294 ± 1 and 283 ± 8 Ma, respectively. The massif was formed as a result of impact of the mantle plume on the active continental margin of the Siberian paleocontinent.  相似文献   

18.
The Burpala alkaline massif contains rocks with more than 50 minerals rich in Zr,Nb,Ti,Th,Be and rare earth elements(REE).The rocks vary in composition from shonkinite,melanocratic syenite,nepheline and alkali syenites to alaskite and alkali granite and contain up to 10%LILE and HSFE,3.6%of REE and varying amounts of other trace elements(4%Zr,0.5%Y,0.5%Nb,0.5%Th and 0.1%U).Geological and geochemical data suggest that all the rocks in the Burpala massif were derived from alkaline magma enriched in rare earth elements.The extreme products of magma fractionation are REE rich pegmatites,apatite-fiuorite bearing rocks and carbonatites.The Sr and Nd isotope data suggest that the source of primary melt is enriched mantle(EM-Ⅱ).We correlate the massif to mantle plume impact on the active margin of the Siberian continent.  相似文献   

19.
The nepheline syenites and foidolites of the world’s largest Lovozero and Khibiny allkaline massifs contain numerous xenoliths of intercalating olivine basalts, their tuffs, tuffites, and quartzitosandstones that experienced more (in the Khibiny Massif) or less (in the Lovozero Massif) intense thermal-metasomatic transformation. In terms of geological, petrographical, and petrochemical features, the unaltered rocks of the Lovozero Formation can be ascribed to the rocks of the trap formation, while all wealth of the rocks formed during their contact-metasomatic alteration (sekaninaite-anorthoclase, annite-anorthoclase, fayalite-anorthoclase, rutile-freudenbergite-anorthoclase, topaz-andalusite-anorthoclase, and others) was formed due to alkaline metasomatism. The Fourier analysis of the color variation curves for the volcanogenic-sedimentary rocks revealed the identity between bedding of initial tuffs (tuffites) and banding of their fenitized analogues.  相似文献   

20.
The U-Pb geochronological study (by the classic technique and on an ion microprobe) of syenites from central Karelia has established their Archean age. The age values obtained for individual massifs are 2735 ± 15 Ma for syenites from the Sjargozero Massif and 2745 ± 10 Ma for syenite from the Khizhjarvi Massif. The syenites are demonstrated to have been emplaced nearly synchronously with sanukitoid massifs in central Karelia, whose average age is 2743 ± 3 Ma (Bibikova et al., 2005). The syenites of the Sjargozero Massif and granodiorites of the Ust-Volomsky Massif were determined to have practically identical ages of 2735 and 2738 Ma, respectively, a fact also corroborating the coeval character of the syenites and granodiorites. Some zircon grains from the Sjargozero syenites contain cores with an age of about 2755 Ma, which suggests that the syenites could have been contaminated with the material of the host volcanic rocks of basaltic and andesitic composition that were metamorphosed at 2750–2760 Ma. The results of the isotopic geochronologic research indicate that the different rock groups composing the Archean postorogenic association of sanukitoids, syenites, and granitoids in central Karelia have been generated in a single stage at approximately 2740 Ma, i.e., 60–70 m.y. after the origin of the syntectonic tonalites. The zircons have elevated Th/U ratios, which is consistent with the mantle genesis of the rocks. Significant crustal contamination was identified in the most acid members of the sanukitoid series: syenites and granitoids. Our data obtained for zircons from the sanukitoids and syenites of the Karelian craton in the Baltic Shield are in good agreement with the results obtained on the sanukitoids of the Canadian Shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号