首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

2.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   

3.
NGC 3741: the dark halo profile from the most extended rotation curve   总被引:1,自引:0,他引:1  
We present new H  i observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended H  i disc, which allows us to trace the rotation curve out to unprecedented distances in terms of the optical disc: we reach 42 B -band exponential scalelengths or about 7 kpc. The H  i disc is strongly warped, but the warp is very symmetric. The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. In order to account for the observed features in the data cube, radial motions of the order of 5–13 km s−1 are needed. They are consistent with an inner bar of several hundreds of pc and accretion of material in the outer regions.
The observed rotation curve was decomposed into its stellar, gaseous and dark components. The Burkert dark halo (with a central constant density core) provides very good fits. The dark halo density distribution predicted by the Λ cold dark matter (CDM) theory fails to fit the data, unless NGC 3741 is a 2.5σ exception to the predicted relation between concentration parameter and virial mass and at the same time a high value of the virial mass (though poorly constrained) of  1011 M  . Noticeably, modified Newtonian dynamics (MOND) seems to be consistent with the observed rotation curve. Scaling up the contribution of the gaseous disc also gives a good fit.  相似文献   

4.
An ensemble cluster has been formed from a data set comprising a complete magnitude-limited sample of 680 giant galaxies  ( M 0 B ≲−19)  in eight low-redshift clusters, normalized by the velocity dispersions and virial radii for the early-type cluster populations. Distinct galaxy populations have been identified, including an infall population. A majority (50–70 per cent or greater) of the infall population are found to be in interacting or merging systems characterized by slow gravitational encounters. The observed enhancement of galaxy–galaxy encounters in the infall population compared to the field can be explained by gravitational shocking. It is shown that disc galaxy mergers in the infall population integrated over the estimated lifetime of the cluster (∼10 Gyr) can readily account for the present cluster S0 population.  相似文献   

5.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

6.
We use recent observations of high-redshift galaxies to study the evolution of galactic discs over the redshift range 0 <  z ≲1. The data are inconsistent with models in which discs were already assembled at z  = 1 and have evolved only in luminosity since that time. Assuming that disc properties change with redshift as powers of 1 +   z and analysing the observations assuming an Einstein–de Sitter universe, we find that for given rotation speed, disc scalelength decreases with z as ∼ (1 +  z )−1, total B -band mass-to-light ratio decreases with z as ∼ (1 +  z )−1, and disc luminosity (again in B ) depends only weakly on z . These scalings are consistent with current data on the evolution of disc galaxy abundance as a function of size and luminosity. Both the scalings and the abundance evolution are close to the predictions of hierarchical models for galaxy formation. If different cosmogonies are compared, the observed evolution in disc size and disc abundance favours a flat low-Ω0 universe over an Einstein–de Sitter universe.  相似文献   

7.
A total of 235 active galactic nuclei (AGN) from two different soft X-ray surveys [the ROSAT Deep Survey (DRS) and the ROSAT International X-ray Optical Survey (RIXOS)] with redshifts between 0 and 3.5 are used to study the clustering of X-ray selected AGN and its evolution. A 2σ significant detection of clustering of such objects is found on scales < 40–80 h −1 Mpc in the RIXOS sample, while no clustering is detected on any scales in the DRS sample. Assuming a single power-law model for the spatial correlation function (SCF), quantitative limits on the AGN clustering have been obtained: a comoving correlation length 1.5 ≲  r 0 ≲ 3.3  h −1 Mpc is implied for comoving evolution, while 1.9 ≲  r 0 ≲ 4.8 for stable clustering and 2.2 ≲  r 0 ≲ 5.5 for linear evolution. These values are consistent with the correlation lengths and evolutions obtained for galaxy samples, but imply smaller amplitude or faster evolution than recent ultraviolet and optically selected AGN samples. We also constrain the ratio of bias parameters between X-ray selected AGN and IRAS galaxies to be ≲ 1.7 on scales ≲ 10  h −1 Mpc, a somewhat smaller value than is inferred from local large-scale dynamical studies.  相似文献   

8.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

9.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

10.
11.
Stellar population studies show that low-mass galaxies in all environments exhibit stellar haloes that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that extends beyond the young disc. We examine a suite of Smoothed Particle Hydrodynamic simulations and find that elevated early star formation activity combined with supernova feedback can produce an extended stellar distribution that resembles these haloes for model galaxies ranging from   v 200= 15  to 35 km s−1, without the need for accretion of subhaloes.  相似文献   

12.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

13.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

14.
In this work we build a detailed dynamic model for an S0 galaxy possibly hosting a central massive dark object (MDO). We show that the photometric profiles and the kinematics along the major and minor axes, including the h 3 and h 4 profiles, imply the presence of a central MDO of mass     i.e. 0.3–2.8 per cent of the mass derived for the stellar spheroidal component. Models without MDO are unable to reproduce the kinematic properties of the inner stars and of the rapidly rotating nuclear gas.
The stellar population consists of an exponential disc (27 per cent of the light) and a diffuse spheroidal component (73 per cent of the light) that cannot be represented by a simple de Vaucouleurs profile at any radius. The M L ratios we found for the stellar components (3.3 and 6.6 respectively) are typical of those of disc and elliptical galaxies.  相似文献   

15.
We present circumstantial evidence that the central region of the edge-on S0 galaxy NGC 4570, which harbours a 150-pc scale nuclear disc in addition to its main outer disc, has been shaped under the influence of a small (∼ 500 pc) bar. This is based on the discovery of two edge-on rings, the locations of which are consistent with the inner Lindblad and ultraharmonic resonances of a rapidly tumbling triaxial potential. Observed features in the photometry and rotation curve correspond nicely with the positions of the main resonances, strengthening the case for a tumbling bar potential. The relative blue colour of the ILR ring, and the complete absence of any detected ISM, indicates that the nuclear ring is made of relatively young (≲ 2 Gyr) stars. We discuss a possible secular evolution scenario for this complex multicomponent galaxy, which may also apply to many other S0 galaxies with observed rings and/or multiple disc components.  相似文献   

16.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

17.
We present the first imaging X-ray observation of the highly inclined  ( i = 78°)  Sab Seyfert 2 galaxy NGC 6810 using XMM–Newton , which reveals soft X-ray emission that extends out to a projected height of ∼7 kpc away from the plane of the galaxy. The soft X-ray emission beyond the optical disc of the galaxy is most plausibly extraplanar, although it could instead come from large galactic radius. This extended X-ray emission is spatially associated with diffuse Hα emission, in particular with a prominent 5-kpc-long Hα filament on the north-west of the disc. A fraction ≲35 per cent of the total soft X-ray emission of the galaxy arises from projected heights  | z | ≥ 2 kpc  . Within the optical disc of the galaxy the soft X-ray emission is associated with the star-forming regions visible in ground-based Hα and XMM–Newton optical monitor near-UV imaging. The temperature, supersolar α-element-to-iron abundance ratio, soft X-ray/Hα correlation, and X-ray to far-infrared (FIR) flux ratio of NGC 6810 are all consistent with local starbursts with winds, although the large base radius of the outflow would make NGC 6810 one of the few 'disc-wide' superwinds currently known. Hard X-ray emission from NGC 6810 is weak, and the total   E = 2–10 keV  luminosity and spectral shape are consistent with the expected level of X-ray binary emission from the old and young stellar populations. The X-ray observations provide no evidence of any active galactic nucleus activity. We find that the optical, IR and radio properties of NGC 6810 are all consistent with a starburst galaxy, and that the old classification of this galaxy as a Seyfert 2 galaxy is probably incorrect.  相似文献   

18.
We present velocity dispersion measurements for 69 faint early-type galaxies in the core of the Coma cluster, spanning  −22.0 ≲ MR ≲−17.5 mag  . We examine the   L –σ  relation for our sample and compare it to that of bright elliptical galaxies (Es) from the literature. The distribution of the the faint early-type galaxies in the   L –σ  plane follows the relation   L ∝σ2.01±0.36  , which is significantly shallower from   L ∝σ4  as defined for the bright Es. While increased rotational support for fainter early-type galaxies could account for some of the difference in slope, we show that it cannot explain it. We also investigate the colour–σ relation for our Coma galaxies. Using the scatter in this relation, we constrain the range of galaxy ages as a function of their formation epoch for different formation scenarios. Assuming a strong coordination in the formation epoch of faint early-type systems in Coma, we find that most had to be formed at least 6 Gyr ago and over a short 1-Gyr period.  相似文献   

19.
The Sc galaxy M 99 in the Virgo Cluster has been strongly affected by tidal interactions and recent close encounters, responsible for an asymmetric spiral pattern and a high star formation rate. Our XMM–Newton study shows that the inner disc is dominated by hot plasma at kT ≈ 0.30 keV, with a total X-ray luminosity of ≈1041 erg s−1 in the 0.3–12 keV band. At the outskirts of the galaxy, away from the main star-forming regions, there is an ultraluminous X-ray source (ULX) with an X-ray luminosity of ≈2 × 1040 erg s−1 and a hard spectrum well fitted by a power law of photon index Γ≈ 1.7. This source is close to the location where a massive H  i cloud appears to be falling on to the M 99 disc at a relative speed of >100 km s−1. We suggest that there may be a direct physical link between fast cloud collisions and the formation of bright ULXs, which may be powered by accreting black holes with masses ∼100 M. External collisions may trigger large-scale dynamical collapses of protoclusters, leading to the formation of very massive (≳200 M) stellar progenitors; we argue that such stars may later collapse into massive black holes if their metal abundance is sufficiently low.  相似文献   

20.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号