首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Absolute rate coefficient measurements have been carried out for the reactions of Cl atoms with propene and a series of 3-halopropenes, at room temperature (298 ± 2) K using a newly constructed laser photolysis-resonance fluorescence (PLP-RF) system. The rate coefficients obtained (in units of cm3 molecule–1 s–1) are: propene (1.40± 0.24) ×10–10, 3-fluoropropene (4.92 ± 0.42) ×10–11, 3-chloropropene (7.47 ± 1.50) × 10–11, 3-bromopropene (1.23± 0.14) ×10–10 and 3-iodopropene (1.29± 0.15) ×10–10. In order to test this new system, the reactions of Cl atoms with acetone and isoprene have also been studied and compared with data previously reported. The rate coefficients determined at room temperature for these last two reactions are (2.93 ± 0.20) ×10–12 cm3 molecule–1 s– 1 and (3.64± 0.20)×10–10 cm3 molecule–1 s–1, respectively. The measured values were independent of pressure over the range 20–200 Torr. The influence of the different halogen atoms substituents on the reactivity of these alkenes with Cl atoms as well as the atmospheric implications of these measurements are studied and discussed for the first time in this work and compared with the reactivity with NO3 and OH radicals.  相似文献   

2.
The relative rate technique has been used to measure rate constants for the reaction of chlorine atoms with peroxyacetylnitrate (PAN), peroxypropionylnitrate (PPN), methylhydroperoxide, formic acid, acetone and butanone. Decay rates of these organic species were measured relative to one or more of the following reference compounds; ethene, ethane, chloroethane, chloromethane, and methane. Using rate constants of 9.29×10–11, 5.7×10–11, 8.04×10–12, 4.9×10–13, and 1.0×10–13 cm3 molecule–1 sec–1 for the reaction of Cl atoms with ethene, ethane, chloroethane, chloromethane, and methane respectively, the following rate constants were derived, in units of cm3 molecule–1 s–1: PAN, <7×10–15; PPN, (1.14±0.12)×10–12; HCOOH, (2.00±0.25)×10–13; CH3OOH, (5.70±0.23)×10–11; CH3COCH3, (2.37±0.12)×10–12; and CH3COC2H5, (4.13±0.57)×10–11. Quoted errors represent 2 and do not include possible systematic errors due to errors in the reference rate constants. Experiments were performed at 295±2 K and 700 torr total pressure of nitrogen or synthetic air. The results are discussed with respect to the previous literature data and to the modelling of nonmethane hydrocarbon oxidation in the atmosphere.In recent discussions with Dr. R. A. Cox of Harwell Laboratory, UKAEA, we learnt of a preliminary value for the rate constant of the reaction of Cl with acetone of (2.5±1.0)×10–12 cm3 molecule–1 sec–1 measured by R. A. Cox, M. E. Jenkin, and G. D. Hayman using molecular modulation techniques. This value is in good agreement with our results.  相似文献   

3.
The absolute rate constants for the gas-phasereactions of the NO3 radical with a series ofaldehydes such as acetaldehyde, propanal, butanal,pentanal, hexanal and, heptanal were measured overthe temperature range 298–433 K, using a dischargeflow system and monitoring the NO3 radical byLaser Induced Fluorescence (LIF).The measured rate constants at 298 K for thereaction of NO3, in units of 10–14 cm3molecule–1 s–1, were as follows:acetaldehyde 0.32 ± 0.04, propanal 0.60 ± 0.06, butanal 1.46± 0.16, pentanal 1.75 ±0.06, hexanal 1.83 ± 0.36, and heptanal 2.37 ±0.42. The proposed Arrhenius expressions arek1 = (6.2 ± 7.5) × 10–11 exp[–(2826 ± 866)/T] (cm3 molecule–1s–1),k2 = (1.7 ± 1.0) × 10–11 exp[–(2250 ± 192)/T] (cm3 molecule–1s1), k3 =(7.6 ± 9.8) × 1011 exp[–(2466 ± 505)/T] (cm3 molecule–1s–1),k4 = (2.8 ± 1.4) × 10–11 exp[–(2189 ± 156)/T] (cm3 molecule–1s–1), k5 = (7.0 ± 1.8) ×10–11 exp [–(2382 ± 998)/T](cm3 molecule–1 s–1), andk6 = (7.8 ± 1.0) × 10–11 exp[–(2406 ± 481)/T](cm3 molecule–1 s–1).Tropospheric lifetimes for these aldehydes werecalculated at night and during the day for typicalNO3 and OH average concentrations and showed thatboth radicals provide an effective tropospheric sinkfor these compounds and that the night-time reactionwith the NO3 radical can be an important, if notdominant, loss process for these emitted organics andfor NO3 radicals.  相似文献   

4.
Rate coefficients have been measured for the gas phasereactions of hydroxyl (OH) radicals and ozone with twounsaturated esters, allyl acetate(CH3C(O)OCH2CH=CH2) and isopropenylacetate (CH3C(O)OC(CH3)=CH2). The OHexperiments were carried out using the pulsed laserphotolysis – laser induced fluorescence technique overthe temperature range 243–372 K and the kinetic dataused to derive the following Arrhenius expressions (inunits of cm3 molecule-1 s-1): allylacetate, k 1 = (2.33 ± 0.27) ×10-12 exp[(732 ± 34)/T]; and isopropenyl acetate,k 2 = (4.52 ± 0.62) × 10-12exp[(809 ± 39)/T]. At 298 K, the rate coefficients obtained (inunits of 10-12 cm3 molecule-1 s-1)are: k 1 = (27.1 ± 3.0) and k 2= (69.6± 9.4). The relative rate technique has been usedto determine rate coefficients for the reaction ofozone with the acetates. Using methyl vinyl ketone asthe reference compound and a value of4.8 × 10-18 cm3 molecule-1s-1 asthe rate coefficient for its reaction with O3,the following rate coefficients were derived at 298 ± 4 K (in units of10-18 cm3molecule-1 s-1): allyl acetate, (2.4 ± 0.7) andisopropenyl acetate (0.7 ± 0.2). Theresults are discussed in terms of structure-activityrelationships and used to derive atmospheric lifetimesfor the acetates.  相似文献   

5.
We have employed a pulsed laser photolysis-pulsed laser induced fluorescence technique to study the kinetics and mechanism of the reaction of OH with dimethylsulfoxide and its deuterated analogue. A rate coefficient of (1.0±0.3)×10-10 cm3 molecule-1 s-1 was obtained ar room temperature. The rate coefficient was independent of pressure over the range 25–700 Torr, showed no dependence on the nature of the buffer gas and showed no kinetic isotope effect. A limited study of the temperature dependence indicated that the reaction displays a negative activation energy. The gas phase ultraviolet absorption spectrum was obtained at room temperature and showed a strong absorption feature in the far ultraviolet. The absolute absorption cross-section at 205 nm, the absorption peak, is (1.0±0.3)×10-17 cm2, where the large uncertainty results from experimental difficulties associated with the low vapor pressure and stickiness of DMSO.  相似文献   

6.
Rate constants for the gas-phase reactions of OH radicals with nopinone (6,6-dimethylbicyclo[3.1.1]heptan-2-one) and camphenilone (3,3-dimethylbicyclo[2.2.1]heptan-2-one) and for the reactions of 4-acetyl-1-methylcyclohexene with OH and NO3 radicals and O3 have been measured at 296±2 K. The rate constants (cm3 molecule–1 s–1 units) obtained were, for reaction with the OH radical: nopinone, (1.43±0.37)×10–11; camphenilone, (5.15±1.44)×10–12; and 4-acetyl-1-methylcyclohexene, (1.29±0.33)×10–10; for reaction with the NO3 radical: 4-acetyl-1-methylcyclohexene, (1.05±0.38)×10–11; and for reaction with O3: 4-acetyl-1-methylcyclohexene, (1.50±0.53)×10–16. These data are used to calculate the tropospheric lifetimes of these monoterpene atmospheric reaction products.  相似文献   

7.
The chemistry of glycolaldehyde (hydroxyacetaldehyde) relevant to the troposphere has been investigated using UV absorption spectrometry and FTIR absorption spectrometry in an environmental chamber. Quantitative UV absorption spectra have been obtained for the first time. The UV spectrum peaks at 277 nm with a maximum cross section of (5.5± 0.7)×10–20 cm2 molecule–1. Studies of the ultraviolet photolysis of glycolaldehyde ( = 285 ± 25 nm) indicated that the overall quantum yield is > 0.5 in one bar of air, with the major products being CH2OH and HCO radicals. Rate coefficients for the reactions of Cl atoms and OH radicals with glycolaldehyde have been determined to be (7.6± 1.5)×10–11 and (1.1± 0.3)×10–11 cm3 molecule–1 s–1, respectively, in good agreement with the only previous study. The lifetime of glycolaldehyde in the atmosphere is about 1.0 day for reaction with OH, and > 2.5 days for photolysis, although both wet and dry deposition should also be considered in future modeling studies.  相似文献   

8.
A combined study of the OH gas phase reaction and uptake on aqueous surfacesof two carbonates, dimethyl and diethyl carbonate has been carried out todetermine the atmospheric lifetimes of these compounds. Rate coefficients havebeen measured for gas phase reactions of OH radicals with dimethyl and diethylcarbonate. The experiments were carried out using pulsed laser photolysis– laser induced fluorescence over the temperature range 263–372K and the kinetic data were used to derive the following Arrhenius expressions(in units of cm3 molecule–1 s–1):for dimethyl carbonate, k1 = (0.83±0.27)×10–12 exp [–(247± 98)/T] and fordiethyl carbonate, k2 = (0.46±0.15)×10–12 exp [(503± 203)/T]. At 298 K, therate coefficients obtained (in units of 10–12 cm3molecule–1 s–1) are: k1 =(0.35± 0.04) and k2 = (2.31± 0.29). The results arediscussed in terms of structure-activity relationships.The uptake coefficients of both carbonates on aqueous surfaces were measuredas a function of temperature and composition of the liquid phase, using thedroplet train technique coupled to a mass spectrometric detection. Dimethyland diethyl carbonate show very similar results. For both carbonates, themeasured uptake kinetics were found to be independent of the aqueous phasecomposition (pure water, NaOH solutions) but dependent on gas-liquid contacttime which characterises a surface saturation effect. The uptake coefficientvalues show a slight negative temperature dependence for both carbonates.These values vary from 1.4×10–2 to0.6×10–2 in the temperature range of 265–279 Kfor dimethyl carbonate, from 2.4×10–2 to0.9×10–2 in the temperature range of 270–279 Kfor diethyl carbonate. From the kinetic data, the following Henry's lawconstants were derived between 279 and 265 K: dimethyl carbonate,H1 = 20–106 M atm–1; and diethyl carbonate,H2 = 30–98 M atm–1. The reported data showthat the OH reaction is the major atmospheric loss process of these twocarbonates with lifetimes of 33 and 5 days, respectively, while the wetdeposition is a negligible process.  相似文献   

9.
Kinetics and products of the gas-phase reactions of dimethylsulphide (DMS), dimethylsulphoxide (DMSO) and dimethylsulphone (DMSO2) with Br atoms and BrO radicals in air have beeninvestigated using on-line Fourier Transform Infrared Spectroscopy (FT-IR) as analytical technique at 740 ± 5 Torr total pressure and at 296 ± 3 K in a480 L reaction chamber. Using a relative rate method for determining the rate constants; the following values (expressed in cm3molecule–1 s–1) were found: kDMS+Br = (4.9 ±1.0) ×10–14, kDMSO + Br < 6 × 10–14,kDMSO 2 + Br 1 × 10–15,kDMSO + BrO = (1.0 ± 0.3) × 10–14 andkDMSO 2 + BrO 3 × 10–15 (allvalues are given with one on the experimental data). DMSO, SO2, COS, CH3SBr andCH3SO2Br were identified as the main sulphur containing products of the oxidation of DMS by Br atoms. From the reaction between DMSO and Br atoms, DMSO2and CH3SO2Br were the only sulphur containing products thatwere identified. DMSO, DMSO2 and SO2 were identified as themain sulphur containing products of the reaction between DMS and BrO.DMSO2 was found to be the only product of the reaction between DMSO and BrO. For the reactions of DMSO2 with Br and BrO no products were identified because the reactions were too slow.The implications of these results for atmospheric chemistry are discussed.  相似文献   

10.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   

11.
The gas phase reactions of peroxyacetyl nitrate (PAN) with OH and Cl have been studied using the discharge-flow EPR method. The rate constants are found to be k 3=(7.5±1.4)×10-14 and k 4=(3.7±1.7)×10-13 cm3 molecule-1 s-1 at 298 K, respectively. These results confirm that the OH+PAN reaction will be the dominant sink of PAN in the middle and upper troposphere, whereas the reaction Cl+PAN will be negligible in contrast with previous estimations.  相似文献   

12.
Rate constants have been measured for the gas-phase reactions of hydroxyl radical with partly halogenated alkanes using the discharge-flow-EPR technique over the temperature range 298–460 K. The following Arrhenius expressions have been derived (units 10–13 cm3 molecule–1 s–1): (8.1 –1.2 +1.5 ) exp{–(1516±53)/T} for CHF2Cl (HCFC-22); (10.3 –1.5 +1.8 ) exp{–(1588±52)/T} for CH2FCF3 (HFC-134a); (11.3 –1.6 +2.1 ) exp{–(918±52)/T} for CHCl2CF2Cl (HCFC-122); (9.2 –2.0 +2.5 ) exp{–(1281±85)/T} for CHFClCF2Cl (HCFC-123a).The atmospheric lifetimes for the substances have been estimated to be 12.6, 12.9, 1.05, and 4.8 years, respectively, and the accuracy of the estimates is discussed.  相似文献   

13.
The rate parameters for the reaction of the OH radical with CH3Br have been measured using the discharge flow-electron paramagnetic resonance method. The result isk 1=(1.86±0.48)×10–12 exp[–(1230±150)/T] cm3 molecule–1 s–1. This value is compared to earlier data and is found to be in excellent agreement with the most recent results, which greatly increases the accuracy of the ozone depletion potential of CH3Br which can be derived from these kinetic data.  相似文献   

14.
The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and 3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.  相似文献   

15.
Reactions of Cl Atoms with Selected VOCs: Kinetics, Products and Mechanisms   总被引:1,自引:0,他引:1  
The reactions of isoprene, MBO (2-methyl-3-buten-2-ol) and toluene with chlorine atoms have been studied at 298 ± 5 K and 740 ± 5 Torr with the use of FTIR spectroscopy. Major products of the isoprene-Cl reaction and of the MBO-Cl reaction have been identified and quantified, and reaction mechanisms have been tentatively proposed in order to explain the products formed. The reaction between isoprene and Cl atoms yields mainly HCl, formyl chloride, formic acid, methylglyoxal (pyruvic aldehyde), CO and CO2, while the MBO-Cl reaction forms acetone, HCl, formyl chloride, formic acid, CO, CO2. As products from the reaction between toluene and Cl we identified and quantified HCl and benzaldehyde. The rate constants for the reactions of isoprene and toluene with Cl atoms have also been determined using a relative rate method. The measured values are: kisoprene = (5.5 ± 1.0) × 10–10 cm3 molecule–1 s–1 and ktoluene = (5.6 ± 1.3) × 10–11 cm3 molecule–1 s–1. Atmospheric lifetimes have been estimated from these values.  相似文献   

16.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

17.
The 1,4-hydroxycarbonyl 5-hydroxy-2-pentanone is an important product of the gas-phase reaction of OH radicals with n-pentane in the presence of NO. We have used a relative rate method with 4-methyl-2-pentanone as the reference compound to measure the rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. The carbonyls were sampled by on-fiber derivatization using a Solid Phase Micro Extraction (SPME) fiber coated with O> -(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride with subsequent thermal desorption of the oxime derivatives and quantification by gas chromatography with flame ionization detection. For comparison, the reference compound was also analyzed following sample collection onto a Tenax adsorbent cartridge. Products of the reaction were investigated using coated-fiber SPME sampling with gas chromatography-mass spectrometry analysis as well as by using in situ atmospheric pressure ionization mass spectrometry. A rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone of (1.6 ± 0.4) × 10–11 cm3 molecule–1 s–1 was obtained at 296 ± 2 K. Two dicarbonyl products, of molecular weight 86 and 100, were observed and are attributed to CH3C(O)CH2CHO and CH3C(O)CH2CH2CHO, respectively. Reaction schemes leading to these products are presented.  相似文献   

18.
A discharge-flow tube coupled with resonance fluorescence and chemiluminescence detection has been used to investigate the reactions IO + HO2 products (1) and IO + O(3P) I + O2(2), at T = 296 ± 1 K and P = 1.7 - 2 Torr. The rate constants k-1 and k2 have been found to be (7.1 ± 1.6) × 10-11 cm3 molecule-1 s-1 and (1.35 ± 0.15) × 10-10 cm3 molecule-1 s-1, respectively.  相似文献   

19.
The following temperature-dependent rate coefficients (k/cm3 molecule–1 s–1) of the reactions of hydroxyl radicals with aliphatic ethers have been determined over the temperature range 247–373 K by a competitive flow technique: diethyl ether,k OH=5.2×10–12 exp[(262±150)/T]; methyln-butyl ether,k OH=5.4×10–12 exp[(309±150)/T]; ethyln-butyl ether,k OH=7.3×10–12 exp[(335±150)/T]; di-n-butyl ether,k OH=5.5×10–12 exp[(502±150)/T] and di-n-pentyl ether,k OH=8.5×10–12 exp[(417±150)/T]. The data have been measured relative to the rate coefficientk(OH + 2,3-dimethylbutane)=6.2×10–12 cm3 molecule–1 s–1 independent of temperature.Previous discrepancies in the room-temperature rate coefficients for the OH reactions with ethyln-butyl ether and di-n-butyl ether, obtained in the flow and static experiments of Bennett and Kerr (J. Atmos. Chem. 8, 87–94, 1989;10, 29–38, 1990) compared with those of Wallingtonet al. (Int. J. Chem. Kinet. 20, 541–547, 1988;21, 993–1001, 1989) and of Nelsonet al. (Int. J. Chem. Kinet. 22, 1111–1126, 1990) have been resolved. The results are considered in relation to the available literature data and evaluated rate expressions are deduced where possible. The data are also discussed in terms of structure-activity relationships.  相似文献   

20.
The kinetics of the aqueous phase reactions of NO3 radicals with HCOOH/HCOO and CH3COOH/CH3COO have been investigated using a laser photolysis/long-path laser absorption technique. NO3 was produced via excimer laser photolysis of peroxodisulfate anions (S2O 8 2– ) at 351 nm followed by the reactions of sulfate radicals (SO 4 ) with excess nitrate. The time-resolved detection of NO3 was achieved by long-path laser absorption at 632.8 nm. For the reactions of NO3 with formic acid (1) and formate (2) rate coefficients ofk 1=(3.3±1.0)×105 l mol–1 s–1 andk 2=(5.0±0.4)×107 l mol–1 s–1 were found atT=298 K andI=0.19 mol/l. The following Arrhenius expressions were derived:k 1(T)=(3.4±0.3)×1010 exp[–(3400±600)/T] l mol–1 s–1 andk 2(T)=(8.2±0.8)×1010 exp[–(2200±700)/T] l mol–1 s–1. The rate coefficients for the reactions of NO3 with acetic acid (3) and acetate (4) atT=298 K andI=0.19 mol/l were determined as:k 3=(1.3±0.3)×104 l mol–1 s–1 andk 4=(2.3±0.4)×106 l mol–1 s–1. The temperature dependences for these reactions are described by:k 3(T)=(4.9±0.5)×109 exp[–(3800±700)/T] l mol–1 s–1 andk 4(T)=(1.0±0.2)×1012 exp[–(3800±1200)/T] l mol–1 s–1. The differences in reactivity of the anions HCOO and CH3COO compared to their corresponding acids HCOOH and CH3COOH are explained by the higher reactivity of NO3 in charge transfer processes compared to H atom abstraction. From a comparison of NO3 reactions with various droplets constituents it is concluded that the reaction of NO3 with HCOO may present a dominant loss reaction of NO3 in atmospheric droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号