首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The local meteoric water line (MWL) has been established from north to south of the Tibetan Plateau based on the measured results of δD and δ18O in precipitation and river water, and the relationship between MWL and moisture origins discussed. The spatial and seasonal variations ofd in precipitation and river water on the Tibetan Plateau have been studied. Results show that the spatial and seasonal variations ofd between north and south of the Tanggula Mountains are related to different moisture origins and water recycling.  相似文献   

2.
The 213 m ice core from the Puruogangri Ice Field on the Tibetan Plateau facilitates the study of the regional temperature changes with its δ 18O record of the past 100 years. Here we combine information from this core with that from the Dasuopu ice core (from the southern Tibetan Plateau), the Guliya ice core (from the northwestern Plateau) and the Dunde ice core (from the north-eastern Plateau) to learn about the regional differences in temperature change across the Tibetan Plateau. The δ 18O changes vary with region on the Plateau, the variations being especially large between South and North and between East and West. Moreover, these four ice cores present increasing δ 18O trends, indicating warming on the Tibetan Plateau over the past 100 years. A comparative study of Northern Hemisphere (NH) temperature changes, the δ 18O-reflected temperature changes on the Plateau, and available meteorological records show consistent trends in overall warming during the past 100 years.  相似文献   

3.
Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.  相似文献   

4.
The functional relation between theδ18O values in the shell of gastropod Gyraulus sibirica and the air temperature in the warm half-yearly period, and that between Sr/Ca ratio and the precipitation in the warm half-yearly period were established by calibrating the δ18O and δ13C values, Sr/Ca ratio and Mg/Ca ratio in the shell Gyraulus sibirica, as well as the total organic carbon (TOC) and its δ13C values in the Xingcuo Lake sediment in the eastern Tibetan Plateau. The sequences of air temperature and precipitation in the last 200 years in the region were quantitatively recuperated on this basis. The results showed the following: (i) There was a negative correlativity between Sr/Ca ratio and the precipitation in the warm half-yearly period, its correlation coefficient was 0.86. (ii) There was an obviously positive correlativity between indexδ18O and the running average temperature in the warm half-yearly period, its correlation coefficient was 0.89. (iii) Evolution of the air temperature and the precipitation in the last 200 years can be divided into three phases distinctly. The precipitation in the later mid-19th century was 220 mm higher than that today; the air temperature in the warm half-yearly period was 2℃ lower than that of the present. The precipitation in the minimum air temperature period of the early 20th century was below that today by 60 mm, and the air temperature in the warm half-yearly period was 3.4℃ lower than that today. (iv) An evidently warming and drying trend existed in the last five decades.  相似文献   

5.
Based on the precipitation data obtained through GEWEX Asian Monsoon Experiment–Tibet fieldwork from May to September 1998, this study investigated the features of the summer monsoon precipitation on the northern and southern slopes of the huge Tanggula Mountains in the Qinghai–Xizang (Tibetan) Plateau. The results show that the precipitation on the southern slope is about 50% higher than on the northern slope, whereas the frequency and diurnal pattern of the precipitation are very similar. The mean precipitation intensity on the southern slope is larger than on the northern slope. In most cases, the daily precipitation showed similar variation on both slopes, demonstrating that the precipitation processes might be similar. In the summer monsoon period, the local convective precipitation contributed to the total precipitation on both slopes and such a contribution on the southern slope is larger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Based on summer observations of stable isotope of precipitation at Muztagata, western China, during 2002-2003, this paper presents the relationship between δ 18O in precipitation and air temperature, and discusses the effect of moisture transport on δ 18O in precipitation. Results show that air temperature correlates positively with δ 18O in precipitation, and the temperature effect controls the δ 18O of precipitation in this area. The Muztagata region exhibits high δ 18O values in summer precipitation, similar to those shown at stations in adjacent regions. According to the results of our model set up to trace the moisture trajectories, the westerlies and local moisture circulation contribute to variations of oxygen isotopes in precipitation. In addition, the impacts of the moisture transport distance, the moisture transport level, and the incursion of the polar air mass also influence the variations of δ 18O in precipitation. The moisture origins and transport mechanisms also contribute to the variation of δ 18O in precipitation at Muztagata.  相似文献   

7.
The δ 18O variations in an 80.36 m ice core retrieved in the accumulation zone of the East Rongbuk Glacier, Mount Qomolangma (Everest), is not consistent with changes of air temperature from both southern and northern slopes of Himalayas, as well as these of the temperature anomalies over the Northern Hemisphere. The negative relationship between the δ 18O and the net accumulation records of the ice core suggests the “amount effect” of summer precipitation on the δ 18O values in the region. Therefore, the δ 18O records of the East Rongbuk ice core should be a proxy of Indian Summer Monsoon intensity, which shows lower δ 18O values during strong monsoon phases and higher values during weak phases.  相似文献   

8.
Oxygen stable isotope of atmospheric water vapor is widely used to study the modern process of climate. Atmospheric water vapor samples were collected at Dlingha, northeast of Tibetan Plateau during the period from July 2005 to February 2006. The variation of δ 18O and the relationships between δ 18O and both the temperature and specific humidity are analyzed in this paper. Results show that the seasonal variation of δ 18O of atmospheric water vapor at Delingha is remarkable with higher δ 18O in summer and lower δ 18O in winter. The temporal variation of vapor δ 18O shows obvious fluctuations, with magnitude of over 37‰ The daily variation of the δ 18O is highly correlated with air temperature. The relationship between δ 18O and atmospheric water vapor content is complex. Study shows that δ 18O of atmospheric water vapor is positively correlated with specific humidity in winter in seasonal scale and inversely correlated with specific humidity in summer rainy period. The δ 18O values of atmospheric water vapor are lower than those of precipitation at Delingha, and the average difference is 10.7‰ Variations of δ 18O of atmospheric water vapor is also found to be affected by precipitation events, The model results show that the precipitation effect could have caused the vapor δ 18O in the raining season to lower by 7% in average in July and August. Supported by the National Natural Science Foundation of China (Grant Nos. 40671043, 40571039 and 40771048) and National Basic Research Program of China (Grant No. 2005CB422002)  相似文献   

9.
The correlations of isotopic ratios in precipitation with temperature, air pressure and humidity at dif- ferent altitudes, in southwest China, are analyzed. There appear marked negative correlations for the δ 18O in precipitation with precipitation amount, vapor pressure and atmospheric precipitable water (PW) at Mengzi, Simao and Tengchong stations on synoptic timescale; the marked negative correlations between the δ 18O in precipitation and the diurnal mean temperature at 400 hPa, 500 hPa, 700 hPa and 850 hPa are different from the temperature effect in middle-high-latitude inland. Moreover, the notable positive correlation between the δ 18O in precipitation and the dew-point deficit △Td at different altitudes is found at the three stations. On annual timescale, the annual precipitation amount weighted mean δ 18O display the negative correlations not only with annual precipitation but also with annual mean temperature at 500 hPa. It can be deduced that, in the years with abnormally strong summer monsoon, more warm and wet air from low-latitude oceans is transported northward along the vapor channel located in southwest China and generates abnormally strong rainfall on the way. Meanwhile, the ab- normally strong condensation process will release more condensed latent heat into atmosphere, and lead to the rise of atmospheric temperature during rainfall, but decline of the δ 18O in precipitation. On the contrary, in the years with abnormally weak summer monsoon, the abnormally weak condensation process will release less condensed latent heat into atmosphere, and lead to the decline of atmos- pheric temperature during rainfall, but increase of the δ 18O in precipitation.  相似文献   

10.
In this paper, climatic and environmental changes were reconstructed since 1129A.D. based on the Malan ice core from Hol Xil, the northern Tibetan Plateau. The record of δ 18O in the Malan ice core indicated that the warm-season air temperature variations displayed a general increase trend, the 20th-century warming was within the range of natural climate variability, and the warmest century was the 17th century while the warmest decade was the 1610s, over the entire study period. The “Medieval Warm Epoch” and “Little Ice Age” were also reflected by the ice core record. The dust ratio in the Malan ice core is a good proxy for dust event frequency. The 870-year record of the dust ratio showed that dust events occurred much frequently in the 19th century. Comparing the variations of δ 18O and the dust ratio, it is found that there was a strong negative correlation between them on the time scales of 101―102 years. By analyses of all the climatic records of ice cores and tree rings from the northern Tibetan Plateau, it was revealed that dust events were more frequent in the cold and dry periods than in the warm and wet periods.  相似文献   

11.

The moisture transport history to the south of the Tibetan Plateau was modeled using the meteorological data provided by NCEP in this paper, and the modeled results were compared with the measured δ18O in the south of the Tibetan Plateau. The relation between δ18O in precipitation in the south of the Tibetan Plateau and moisture trajectories was discussed. The results show that the extremely low δ18O in precipitation in the south of the Tibetan Plateau is always related to the moisture from the low-level sea surface evaporation. The long-distance transport of moisture also contributes to low δ18O in precipitation probably due to the rainout process during moisture transport. It is also found that low δ18O in precipitation is also related with deep layer transport of moisture, and with intensive condensation in the upper layers of the atmosphere, resulting in low δ18O because of depletion of heavy isotopes in deep condensation. However, high δ18O in precipitation whether in monsoon period or not is always companied with moisture coming from the upper layers, and the moisture is from northern or western sides of the plateau. The interpretation of the modeled results is in agreement with the isotope fractionation processes.

  相似文献   

12.
Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ18O record shows that before δ3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1-2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ18O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of δ2.2-0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.  相似文献   

13.
Coral samples collected at the outlet and the inlet of the Third Nuclear Power Plant were measured for the δ18O and δ13C, indicating the surrounding seawater temperature and physiological/biochemical reactions during coral skeletal growth. The results show that with higher seawater temperature in summer, the values of δ18O are lower but those for δ13C are higher; however, the δ18O extremes lag six weeks behind the δ13C extremes because the highest water temperature lags the maximum number of sunshine hours. Records of the extreme high temperature observed in the northern South China Sea between Oct. 1987 and Sep. 1988, and the extraordinary low temperature from Oct. 1992 to Feb. 1993 are also preserved in the coralline isotope signals. However, when the water temperature becomes too high the coral growth seems to stop.  相似文献   

14.
The climatic and environmental variations since the Last Interglaciation are reconstructed based on the study of the upper 268 m of the 309-m-long Guliya ice core. Five stages can be distinguished since the Last Interglaciation from the δ18O record in the Guliya ice core: Stage 1 (Deglaciation), Stage2 (the Last Glacial Maximum), Stage 3 (interstadial), Stage 4 (interstadial in the early glacial maximum) and Stage 5 (the Last Interglaciation). Stage 5 can be divided further into 5 substages; a, b, c, d, e. The δ18O record in the Guliya ice core indicates clearly the close correlation between the temperature variation on the Tibetan Plateau and the solar activities. The study indicates that the solar activity is a main forcing to the climatic variation on the Tibetan Plateau. Through a comparison of the ice core record in Guliya with that in the Greenland and the Antarctic, it can be found that the variation of large temperature variation events in different parts of the world is generally the same, but the variation amplitude of temperature is different. Project supported by thc Climbing Program of the State Eighth Five-Year Plan and the National Natural Science Foundation of China.  相似文献   

15.
Expeditions to Muztagata (in the eastern Pamirs) during the summer seasons of 2002 and 2003 collected precipitation samples and measured their oxygen isotopes. The δ 18O in precipitation displays a wide range, varying from −17.40‰ to +1.33‰ in June-September 2002 and from −22.31‰ to +4.59‰ in May-August 2003. The δ 18O in precipitation correlates with the initial temperature of precipitation during the observing periods. The positive correlation between δ 18O and temperature suggests that δ 18O can be used as an indicator of temperature in this region. The δ 18O values in fresh-snow samples collected from two snow events at different elevations on the Muztagata Glacier show a strong “altitude effect”, with a ratio of nearly −0.40% per 100 m from 5500 m to 7450 m.  相似文献   

16.
The 213 m ice core from the Puruogangri Ice Field on the Tibetan Plateau facilitates the study of the regional temperature changes with its δ18O record of the past 100 years. Here we combine information from this core with that from the Dasuopu ice core (from the southern Tibetan Plateau), the Guliya ice core (from the northwestern Plateau) and the Dunde ice core (from the northeastern Plateau) to learn about the regional differences in temperature change across the Tibetan Plateau. The δ18O changes vary with region on the Plateau, the variations being especially large between South and North and between East and West. Moreover, these four ice cores present increasing δ18O trends, indicating warming on the Tibetan Plateau over the past 100 years. A comparative study of Northern Hemisphere (NH) temperature changes, the δ18O-reflected temperature changes on the Plateau, and available meteorological records show consistent trends in overall warming during the past 100 years.  相似文献   

17.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A detailed stable isotopic study based on benthic foraminifera from 1165 samples of ODP Site 1148 (18° 50.17.3’N, 116° 33.93’E, water depth 3308.3 m), northern South China Sea, provides an excellent oxygen isotopic record with an average resolution of 30 ka. It contains the most continuous δ18O data with highest resolution for the whole Neogene sequence in the world. The δ18O curve shows a step-like increasing upwards and records 5 increases, 3 decreases and 2 stable stages during the Neogene, reflecting the general trend of global cooling. Among these events the δ18O decrease at 17.2–14.5 Ma, and two δ18O increases at 14.5-13.6 and 3.0-2.4 Ma are most marked and globally comparable. The intervals at 13.6-10.2 and 6.0-3.0 Ma with the lowest-amplitude and least fluctuation in δ18O represent the most stable bottom water periods for the South China Sea.  相似文献   

19.
上新世以来构造隆升对亚洲夏季风气候变化的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
张冉  刘晓东 《地球物理学报》2010,53(12):2817-2828
大量地质证据表明,上新世以来(最近5 MaB.P.)青藏高原北部及非洲东部和南部地区出现过显著的构造隆升,而与此同时亚洲季风也经历了显著变化,这两者之间是否存在着因果联系一直是地学界所关心和争论的一个重要科学问题.本文利用美国国家大气研究中心(NCAR)的公用大气模式(CAM 3.1)就上新世以来青藏高原北部及东-南非高原的构造隆升对亚洲夏季风气候变化的影响进行了数值试验研究.结果表明,上新世以来亚洲夏季风的增强与两地构造隆升密切相关,但两者隆升对于亚洲季风子系统的作用是有区别的.青藏高原北部隆升主要造成东亚北部夏季风的增强及季风降水的增多,但对南亚夏季风的作用较小;东-南非高原的隆升明显增强南亚夏季风,但对东亚北部夏季风的影响有限.  相似文献   

20.
δ18O of a stalagmite collected from Shihua Cave, 50 km southwest of Beijing is analyzed. The uppermost 2 cm was sampled at about 3-year intervals by a computer-controlled microsampling device. A total of 133 samples were analyzed, covering the last 480 years. A comparison of the δ18O record with the instrumentally recorded precipitation in Beijing and Tianjin back to 1840 AD shows that high precipitation correlates with negative δ18O peaks. The long-term δ18O trend records temperature changes. Between 1620 and 1900 AD, the temperature was cooler than the average value for the 480-year record, corresponding to the Little Ice Age. Temperatures warmer than the average prevailed during 1520–1620 and 1900—present. Superimposed on the long-term trend are about 14 δ18O cycles of 30–40-year periodicity, with wet periods centered around 1985, 1955, 1910, 1880, 1840, 1800, 1760, 1730, 1690, 1660, 1630, 1600, 1560 and 1530 AD. Project supported by the National Natural Science Foundation of China (Grant No. 9615875).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号