首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 1991, Mississippi River water has been diverted at Caernarvon, Louisiana, into Breton Sound estuary. Breton Sound estuary encompasses 1100 km2 of fresh and brackish, rapidly subsiding wetlands. Nitrite + nitrate, total Kjeldahl nitrogen, ammonium, total phosphorus, total suspended sediments, and salinity concentrations were monitored at seven locations in Breton Sound from 1988 to 1994. Statistical analysis of the data indicated decreased total Kjeldahl nitrogen with associated decrease in total nitrogen, and decreased salinity concentrations in the estuary due to the diversion. Spring and summer water quality transects indicated rapid reduction of nitrite + nitrate and total suspended sediment concentration as diverted Mississippi River water entered the estuary, suggesting near complete assimilation of these constituents by the ecosystem. Loading rates of nitrite + nitrate (5.6–13.4 g m−2 yr−1), total nitrogen (8.9–23.4 g m−2 yr−1), and total phosphorus (0.9–2.0 g m−2 yr−1) were calculated along with removal efficiencies for these constituents (nitrite + nitrate 88–97%; total nitrogen 32–57%; total phosphorus 0–46%). The low impact of the diversion on water quality in the Breton Sound estuary, along with assimilation of TSS over a very short distance, suggests that more water may be introduced into the estuary without detrimental affects. This would be necessary if freshwater diversions are to be used to distribute nitrients and sediments into the lower reaches of the estuary, in an effort to compensate for relative sea-level rise, and reverse the current trend of rapid loss of wetlands in coastal Louisiana.  相似文献   

2.
Utilizing a sequential extraction technique this study provides the first quantitative analysis on the abundance of sedimentary phosphorus and its partitioning between chemically distinguishable phases in sediments of the Bering Sea, the Chukchi Sea and the Mackenzie River Delta in the western Arctic Ocean. Total sedimentary phosphorus (TSP) was fractionated into five operationally defined phases: (1) adsorbed inorganic and exchangeable organic phosphorus, (2) Fe-bound inorganic phosphorus, (3) authigenic carbonate fluorapatite, biogenic apatite and calcium carbonate-bound inorganic and organic phosphorus, (4) detrital apatite, and (5) refractory organic phosphorus. TSP concentrations in surface sediments increased from the Chukchi Sea (18 μmol g−1 of dried sediments) to the Bering Sea (22 μmol g−1) and to the Mackenzie River Delta (29 μmol g−1). Among the five pools, detrital apatite phosphorus of igneous or metamorphic origin represents the largest fraction (~43%) of TSP. The second largest pool is the authigenic carbonate fluorapatite, biogenic apatite as well as CaCO3 associated phosphorus (~24% of TSP), followed by the Fe-bound inorganic phosphorus, representing ~20% of TSP. The refractory organic P accounts for ~10% of TSP and the readily exchangeable adsorbed P accounts for only 3.5% of TSP. Inorganic phosphorus dominates all of phosphorus pools, accounting for an average of 87% of the TSP. Relatively high sedimentary organic carbon and total nitrogen contents and low δ13C values in the Mackenzie River Delta together with the dominance of detrital apatite in the TSP demonstrate the importance of riverine inputs in governing the abundance and speciation of sedimentary phosphorus in the Arctic coastal sediments.  相似文献   

3.
The distribution and partitioning of trace metals (Co, Cu, Fe, Mn, Ni, and Zn) between dissolved and particulate phases were studied in the Tanshui Estuary. The upper reach of the estuary is hypoxic and heavily polluted due to domestic and industrial discharges. The concentration ranges of dissolved and leachable particulate trace metals in the Tanshui Estuary were: Co: 0.3–6.1 nM, 1.8–18.6 mg kg−1; Cu: 5–53 nM, 22–500 mg kg−1; Fe: 388–3,364 nM, 1.08–6.67%; Mn: 57–2,914 nM, 209–1,169 mg kg−1; Ni: 7–310 nM, 6–108 mg kg−1; and Zn: 12–176 nM, 62–1,316 mg kg−1; respectively. The dissolved concentrations of the metals were 2–35 times higher than the average values of the world river water. The distributions of dissolved and particulate studied metals, except Mn, in the estuary showed scattering, which could be attributed to the discharges from many industrial wastewater disposal works located in the upper tributaries. The daily input of dissolved metals from the disposal works to the Tanshui Estuary ranged from 0.1–0.4 tons. Dissolved Mn was nearly conservative in the region with salinity higher than 10 psu, while particulate Mn decreased in the region with salinity of 10–15 psu. The concentration increased significantly seawards, corresponding with the distribution of dissolved oxygen. The distribution coefficient (KD) for Mn in the lower estuary was nearly three orders of magnitude higher than in the upper estuary. This phenomenon may be attributed to the diffusion of Mn from the anoxic sediment in the upper estuary and gradual oxidation into particulate Mn in the middle and lower estuary as the estuarine water became more oxygenated. The distribution coefficient for Cu decreased with increasing salinity. The percentages of trace metals bound by suspended particulate matter decreased in the following order: Fe>Zn, Cu>Co>Mn>Ni.  相似文献   

4.
The hydrogeochemistry of 26 wells belonging to ten different aquifers in the county of Ensenada, Baja California, is studied. These wells are all used to supply the rural communities in the region, which comprise ~37,000 inhabitants, excluding the city of Ensenada. High total dissolved solids (TDS) concentrations (maximum 7.35 g l−1) indicate that salt is a ubiquitous contaminant in the aquifers due to seawater intrusion. The aquifers that support extensive agriculture activities (Maneadero, San Quintín, San Simón and El Rosario) are characterized by higher N–NO3 concentrations (maximum 20 mg l−1) derived from fertilizers. Fluoride concentrations exceed the 1.5 mg l−1 Mexican official limit in only four wells. The enrichments of F in the southern aquifers are thought to be associated to water–rock interactions controlled mainly by Na–Ca equilibrium reactions with fluorite, as suggested from high dissolved Na concentrations in these waters. In the northern aquifer of Maneadero, no enrichment of Na is found and a geothermal source for F is likely. Water is hard to moderately hard, with Ca/Mg ratios >1. Although drinking water directly from the tap is not a common practice in these localities, most sources have concentrations of major ions and TDS that exceed the Mexican official limits.  相似文献   

5.
The Daliao River watershed, an important industrial base of China, has been heavily influenced by anthropogenic activities. Microbes in sediments play an important role in recycling of organics and nutrients, and knowledge of the microbial composition and community structure in river sediments can help us to understand the contribution of microorganisms to environmental processes and their response to environmental perturbation. In this study, 11 surface sediment samples and 1 core sediment sample were collected from the Daliao River water system and its estuary, and their microbial abundance and community compositions were investigated using fluorescence in situ hybridization. Results showed that total cell numbers in surface sediments from different locations ranged from 4.2 × 10to 16.2 × 108 cells cm−3. Domain bacteria represented 58–82% with α-, β-, and γ-proteobacteria as the major subgroups summing up to 40%. Total cell numbers along the core sediment profile ranged from 7.9 × 108 to 20.1 × 108 cells cm−3, with relatively higher total cell numbers in the upper (0–6 cm) and middle (21–30 cm) layers. In the core sediment, domain bacteria represented 62–85% and archaea 1.0–11.8%. α-, β- and γ-Proteobacteria were three major phylogenetic groups of bacteria in the core sediment also with γ-proteobacteria as the most abundant subgroup accounting for 9.8–40.8% of total cells.  相似文献   

6.
Soil organic carbon storage changes in Yangtze Delta region,China   总被引:1,自引:1,他引:0  
Soil carbon sequestration plays an essential role in mitigating CO2 increases and the global greenhouse effect. This paper calculates soil organic carbon (SOC) storage changes during the course of industrialization and urbanization in Yangtze Delta region, China, based on the data of the second national soil survey (1982–1985) and the regional geochemical survey (2002–2005), with the help of remote sensing images acquired in periods of 1980, 2000, 2005. The results show that soils in the top 0–20 and 0–100 cm depth in this region demonstrate the carbon sink effect from the early 1980s to the early 2000s. The SOC storage in 0–20 cm depth has resulted in increase from 213.70 to 238.65 Tg, which corresponds to the SOC density increase from 2.94 ± 1.08 to 3.28 ± 0.92 kg m−2, and mean carbon sequestration storage and rate are 1.25 Tg a−1, 17.14 g m−2 a−1, respectively. The SOC storage in 0–100 cm depth has resulted in increase from 690.26 to 792.65 Tg, which corresponds to the SOC density increase from 9.48 ± 4.22 to 10.89 ± 3.42 kg m−2, and mean carbon sequestration storage and rate are 5.12 Tg a−1, 70.32 g m−2 a−1, respectively. Urban area in Yangtze Delta region, China, increased more than 3,000 km2 and the urban growth patterns circled the central city region in the past 20 years. The SOC densities in 0–20 cm depth decrease gradually along urban–suburban–countryside and the urban topsoil is slightly enriched with SOC. Compared to the data of the second national soil survey in the early 1980s, the mean SOC density in urban area increased by 0.76 kg m2, or up 25.85% in the past 20 years. With the characteristics of SOC storage changes offered, land-use changes, farming system transition and ecological city construction are mainly attributed to SOC storage increases. Because of lower SOC content in this region, it is assumed that the carbon sink effect will go on in the future through improved soil management.  相似文献   

7.
The behaviour of dissolved Al in the Great Ouse estuary, in particular with respect to salinity, is complex. There is, however, evidence from field data as well as laboratory mixing experiments to suggest that flocculation and sorption mechanisms play important roles affecting the concentrations of dissolved Al during the early stages of estuarine mixing. In contrast, a near-buffering of dissolved Al occurs in the entire stretch of the estuary (salinity >0.2) with concentrations varying around 1.4 μg l−1. This distribution and lack of variation with salinity is attributable to sorption processes which might dominate over other processes in these turbid estuarine waters (suspended particulate load 48–888 mg l−1) impacting dissolved Al levels. Sorption models have been developed for both dissolved and leachable particulate Al concentrations in these waters. These observations provide compelling evidence of sorption processes that might be important in the geochemistry of Al in estuarine waters.  相似文献   

8.
The purpose of this study was to determine peat formation processes throughout the millennia in four tidal marshes in the Sacramento–San Joaquin Delta. Peat cores collected at each site were analyzed for bulk density, loss on ignition, and percent organic carbon. Core data and spline fit age–depth models were used to estimate inorganic sedimentation, organic accumulation, and carbon sequestration rates in the marshes. Bulk density and percent organic matter content of peat fluctuated through time at all sites, suggesting that peat formation processes are dynamic and responsive to watershed conditions. The balance between inorganic sedimentation and organic accumulation at the sites also varied through time, indicating that marshes may rely more strongly on either inorganic or organic matter for peat formation at particular times in their existence. Mean carbon sequestration rates found in this study (0.38–0.79 Mg C ha−1 year−1) were similar to other long-term estimates for temperate peatlands.  相似文献   

9.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

10.
Sediment cores were sampled from Xiamen Western Bay at five sites during the summer and winter of 2006 and Hg–Au microelectrodes were used to make on board measurements of the concentration gradients of dissolved oxygen, Mn2+, and Fe2+ within the sediments. The O2 concentrations decreased sharply from about 200 μmol L−1 in the bottom seawater to zero within a depth of a few millimeters into the sediment. Dissolved Mn2+ was detected below the oxic zones with peak concentrations up to 600 μmol L−1, whereas dissolved Fe2+ had peak concentrations up to 1,000 μmol L−1 in deeper layers. The elemental contents of organic carbon and nitrogen within the sediments were analyzed and their C/N ratios were in the range of 9.0 to 10.1, indicative of heavy terrestrial origin. Sediments from two sites near municipal wastewater discharge outlets had higher organic contents than those from the other sites. These high organic contents corresponded to shallow O2 penetration depths, high dissolved Mn2+ and Fe2+ concentrations, and negative redox potentials within the sediments. This indicated that the high organic matter content had promoted microbial respiration within the sediments. Overall, the organic content did not show any appreciable decrease with increasing sediment depths, so a quadratic polynomial function was used to fit the curve of O2 profiles within the sediments. Based on the O2 profiles, O2 fluxes across the seawater and sediment interface were estimated to be in the range 6.07 to 14.9 mmol m−2 day−1, and organic carbon consumption rates within the surface sediments were estimated to be in the range 3.3 to 20.8 mgC cm−3 a−1. The case demonstrated that biogeochemistry within the sediments of the bay was very sensitive to human activities such as sewage discharge.  相似文献   

11.
Estuarine macrobenthos respond to a variety of environmental gradients such as sediment type and salinity, and organic enrichment. A relatively new influence, organic loading from suspended bivalve culture, has the potential to alter this response. A study on soft-bottom macrobenthic communities was carried out in the Richibucto estuary (46°40′N, 64°50′W), New Brunswick, Canada, with samples collected from 18 stations in late September and early October 2006. The site consisted of a large tidal channel originating upstream in a small river. The channel was punctuated by bag culture of oysters along its length. A total of 88 species were recorded. The mean values of abundance, species richness, and diversity (H′) of macrofauna were 11,199 ind. m−2 (ranged from 4,371 to 19,930 ind. m−2), 23.4 species grab−1 and 3.29 grab−1, respectively. In general species richness and H′ increased from the upper estuary to the estuarine mouth. Multivariate analyses clearly exhibited the spatial distribution in community structure, which coincided with the locations along the estuary (the upper, the lower and the mouth), as well as inside and outside the channel. Species richness and diversity H′ showed strong positive correlations with salinity (21.2–25.2 ppt), and abundance was positively correlated with water depth (1.0–4.5 m). Abundance and species richness were negatively correlated with both of silt–clay fraction (3.3–24.8%) and sorting (σI). Species richness was also negatively correlated with organic content (1.9–12.7%). The BIO-ENV analyses identified silt–clay fraction, σI and salinity as the major environmental variable combination influencing the macrofaunal patterns, and silt–clay fraction as the single best-correlated variable.  相似文献   

12.
Sulfide Inhibition of Nitrate Removal in Coastal Sediments   总被引:1,自引:0,他引:1  
Microbial nitrate (NO3) removal via denitrification (DNF) at high sulfide (H2S) concentrations was compared in sediment from a coastal freshwater pond in a developed area that receives salt-water influx during storm events, and a saline pond proximal to an undeveloped estuary. Sediments were incubated with added SO42− (1,000 μg per gram dry weight basis (gdw)) to determine whether acid volatile sulfides (AVS) were formed. DNF in the sediments was measured with NO3–N (300 μg gdw−1) alone, and with NO3–N and H2S (1,000 μg S2− gdw−1). SO42− addition to the freshwater sediments resulted in AVS formation (970 ± 307 μg S gdw−1) similar to the wetland with no added SO42− (986 ± 156 μg S gdw−1). DNF rates measured with no added H2S were greater in the freshwater than the wetland site (10.6 ± 0.6 vs. 6.4 ± 0.1 μg N2O–N gdw−1 h−1, respectively). High H2S concentrations retained NH4–N in the undeveloped wetland and retained NO3–N in the developed freshwater site, suggesting that potential salt-water influx may reduce the ability of the freshwater sediments to remove NO3–N.  相似文献   

13.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

14.
Benthic metabolism and nutrient exchange across the sediment-water interface were examined over an annual cycle at four sites along a freshwater to marine transect in the Parker River-Plum Island Sound estuary in northeastern Massachusetts, U.S. Sediment organic carbon content was highest at the freshwater site (10.3%) and decreased along the salinity gradient to 0.2% in the sandy sediments at the marine end of the estuary. C:N ratios were highest in the mid estuary (23:1) and lowest near the sea (11:1). Chlorophyll a in the surface sediments was high along the entire length of the estuary (39–57 mg chlorophyll a m−2) but especially so in the sandy marine sediments (172 mg chlorophyll a m−2). Chlorophyll a to phaeophytin ratios suggested most chlorophyll is detrital, except at the sandy marine site. Porewater sulfide values varied seasonally and between sites, reflecting both changes in sulfate availability as overlying water salinity changed and sediment metabolism. Patterns of sediment redox potential followed those of sulfide. Porewater profiles of inorganic N and P reflected strong seasonal patterns in remineralization, accumulation, and release. Highest porewater NH4 + values were found in upper and mid estuarine sediments, occasionally exceeding 1 mM N. Porewater nitrate was frequently absent, except in the sandy marine sediments where concentrations of 8 μM were often observed. Annual average respiration was lowest at the marine site (13 mmol O2 m−2 d−1 and 21 mmol TCO2 m−2 d−1) and highest in the mid estuary (130 mmol O2 m−2 d−1 and 170 mmol TCO2 m−2 d−1) where clam densities were also high. N2O and CH4 fluxes were low at all stations throughout the year: Over the course, of a year, sediments varied from being sources to sinks of dissolved organic C and N, with the overall spatial pattern related closely to sediment organic content. There was little correlation between PO4 3− flux and metabolism, which we attribute to geochemical processes. At the two sites having the lowest salinities, PO4 3− flux was directed into the sediments. On average, between 22% and 32% of total system metabolism was attributable to the benthos. The mid estuary site was an exception, as benthic metabolism accounted for 95% of the total, which is attributable to high densities of filter-feeding clams. Benthic remineralization supplied from less than 1% to over 190% of the N requirements and 0% to 21% of the P requirements of primary producers in this system. Estimates of denitrification calculated from stoichiometry of C and N fluxes ranged from 0% for the upper and mid estuary site to 35% for the freshwater site to 100% of sediment organic N remineralization at the marine site. We hypothesize that low values in the upper and mid estuary are attributable to enhanced NH4 + fluxes during summer due to desorption of exchangeable ammonium from rising porewater salinity. NH4 + desorption during summer may be a mechanism that maintains high rates of pelagic primary production at a time of low inorganic N inputs from the watershed.  相似文献   

15.
Alaknanda and Bhagirathi (AB) river basins in the Himalayan region in India expose lithologies comprising mainly of granites, low–high-grade metamorphics, shales and carbonates which, in conjunction with the monsoon rains and glacial melt, control water chemistry and dissolved elemental flux rates. In the present study, we monitored two locations: (a) Srinagar on the Alaknanda river and (b) Maneri on the Bhagirathi river for daily variations in total suspended sediments, major ions and dissolved silica over one complete year (July 2004–June 2005). Based on long-term discharge data, discharge-weighted composition and dissolved elemental flux rates (with respect to Ca, Mg, HCO3, Si) of the river were estimated. The information thus obtained has substantially added up to the existing chemical data of these rivers and has refined the flux rates. Our high-frequency samples provide informations such as (a) water chemical compositions that show a large temporal and spatial variation and (b) carbonate lithology that controls water chemistry predominantly. The dissolution kinetics of various lithologies namely leucogranite, gneiss, quartzite, phyllite and shale of the AB river basins were studied through batch experiments at controlled temperature (25 and 5°C) and pH (8.4) condition. In laboratory, these lithologies undergo slow rates of dissolution (10−13 to 10−15 mol/m2 s), while field weathering rates based on dissolved elemental flux rates in the AB rivers are much higher (10−8 to 10−9 mol/m2 s). Extremely high physical weathering rates in AB rivers, which enhance chemical weathering significantly, mainly attribute this wide discrepancy in laboratory-derived rates of representative basin rocks and dissolved elemental fluxes in the field. However, laboratory-simulated experiments facilitate to quantify elemental release rates, understand the kinetics of the dissolution reactions, and compare their roles at individual level.  相似文献   

16.
Arsenic mobility in fluvial environment of the Ganga Plain,northern India   总被引:1,自引:1,他引:0  
In the northern part of the Indian sub-continent, the Gomati River (a tributary of the Ganga River) was selected to study the dynamics of Arsenic (As) mobilization in fluvial environment of the Ganga Plain. It is a 900-km-long, groundwater-fed, low-gradient, alluvial river characterized by monsoon-controlled peaked discharge. Thirty-six water samples were collected from the river and its tributaries at low discharge during winter and summer seasons and were analysed by ICP-MS. Dissolved As and Fe concentrations were found in the range of 1.29–9.62 and 47.84–431.92 μg/L, respectively. Arsenic concentration in the Gomati River water has been detected higher than in its tributaries water and characteristically increases in downstream, attributed to the downstream increasing of Fe2O3 content, sedimentary organic carbon and silt-clay content in the river sediments. Significant correlation of determination (r 2 = 0.68) was also observed between As and Fe concentrations in the river water. Arsenic concentrations in the river water are likely to follow the seasonal temperature variation and reach the level of World Health Organization’s permissible limit (10 μg/L) for drinking water in summer season. The Gomati River longitudinally develops reducing conditions after the monsoon season that mobilize As into the river water. First, dissolved As enters into pore-water of the river bed sediments by the reductive dissolution of Fe-oxides/hydroxides due to microbial degradation of sedimentary organic matter. Thereafter, it moves upward as well as down slope into the river water column. Anthropogenically induced biogeochemical processes and tropical climatic condition have been considered the responsible factors that favour the release of As in the fluvial environment of the Ganga Plain. The present study can be considered as an environmental alarm for future as groundwater resources of the Ganga–Brahmaputra Delta are seriously affecting the human–environment relationship at present.  相似文献   

17.
Recent identification of elevated excess 210Pb (≤302.6 mBq L−1) and 137Cs (≤111.3 mBq L−1) activity in drinking water wells up to 20 m depth indicates some transport of airborne radionuclide fallout beyond soils in the Shaker Village catchment, Maine. Estimated airborne mass loading 210Pbex fluxes of about 0.9 mBq m−3, canvass this headwater catchment and may be sufficient to pose risks to unprotected shallow wells. Inventories of 210Pbex and 137Cs in pond sediments indicate maximum median activities of 943 mBq g−1 and 40.0 mBq g−1, respectively. Calculated 210Pbex fluxes in the catchment soils range from 0.62–0.78 Bq cm−2 year−1 and yield a mean residence time of near 140 years. Measured 137Cs activity up to 51.1 mBq g−1 occurs in sediments at least to 5 m depth. Assumed particle transport in groundwater with apparent 85Kr ages less than 5 years BP (2005) may explain the correlation between these particle-reactive radionuclides and elevated activity in some drinking water wells.  相似文献   

18.
This study was designed to investigate non-point source nutrient pollution and its influences on submerged aquatic plant community structure and biological invasion in the Weeks Bay National Estuarine Research Reserve (WBNERR). A monthly vegetation survey was conducted to document plant abundance and changes in community structure; physicochemical data and water samples were collected on a bi-monthly basis to monitor environmental conditions (i.e., pH, salinity, dissolved oxygen, light intensity, and attenuation) and water column nutrient (NO2/NO3 and NH4+) and chlorophyll a concentrations. A total of seven submerged aquatic species were identified at the WBNERR with the occurrence of only one non-native species (Hydrilla verticillata). Statistical analyses suggest that water column nitrogen concentrations along with variations in dissolved oxygen (0.6–11.5 mg L−1), light attenuation, pH (5.6–8.6), and temperature (11–33°C) play key roles in determining the aquatic plant abundance and distribution in the WBNERR.  相似文献   

19.
The stage height, dissolved oxygen, and redox potential of the surface water and sediments of an intertidal Texas wetland were evaluated using continuous monitoring techniques. Surface water oxygenation was most drastically affected by photosynthesis, which served to elevate daytime oxygen concentrations compared to those measured at night. Colder temperatures affected dissolved oxygen concentrations by increasing solubility and decreasing heterotrophic consumption. Waters of the San Jacinto River were generally more oxygenated than those in the wetland, and incoming tides typically elevated dissolved oxygen levels unless the tide was in direct conflict with the daily photosynthetic cycle. The redox potentials in the sediments could not be correlated with a daily cycle as was found in the surface waters. Redox potentials in the intertidal zone fluctuated between −150 mV and 300 mV throughout normal cycles of periodic inundation and exhibited decreasing potentials with depth. Sediments further from the waterline had denser vegetation and exhibited higher redox potentials under similar hydrodynamic loading. During extremely dry periods, redox potentials varied from 300 mV to 600 mV, and deeper sediments were often more oxygenated than sediments closer to the sediment-air interface, due to the higher rates of metabolism in the upper stratum. Rates of oxidation and reduction in the sediments were lognormal and evenly distributed about the steady state, with maximum rates of 300 mV min−1 during intermittent periods of inundation. The results show that biological carbon oxidation in sediments can entirely deplete oxygen from surface waters overlying the mud flats, that vegetation serves to oxygenate the rhizosphere, and although redox potential changes can be large in the dynamic intertidal zone, large changes are infrequent.  相似文献   

20.
The rare earth elements (REEs) in the sediments of the Xianghai wetlands were measured by inductively coupled plasma spectrometry. The REEs accumulation rates in two sedimentation cores derived from the riparian and depressional marshes were determined by 210Pb method. The results showed that REEs concentrations in the Xianghai wetland sediments (∑REEs, 116 mg kg−1) were lower than the corresponding values in Chinese soils (181 mg kg−1) and river sediments (∑REEs, 158–191 mg kg−1). Under alkaline conditions (with pH, 8.2–10.3), the light REEs were more enriched than the heavy REEs. Cerium is the predominant element, and accounts for 30–33% of the total REEs. REEs in the depressional marsh sediments were relatively high (∑REEs, 127 vs. 104 mg kg−1), especially light REEs contents. A significantly positive correlation was found between the neighboring elements except Pr and Dy. The different types of vertical distribution of REEs between the riparian and the depressional marsh can partly result from long-term differing hydrological regimes. Generally, depressional marsh had accumulated much more REEs than riparian marsh (the mean accumulation rates of ∑REEs, 102.98 vs. 48.89 μg cm−2 year−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号