首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
System identification provides an effective way to predict the ship manoeuvrability. In this paper several measures are proposed to diminish the parameter drift in the parametric identification of ship manoeuvring models. The drift of linear hydrodynamic coefficients can be accounted for from the point of view of dynamic cancellation, while the drift of nonlinear hydrodynamic coefficients is explained from the point of view of regression analysis. To diminish the parameter drift, reconstruction of the samples and modification of the mathematical model of ship manoeuvring motion are carried out. Difference method and the method of additional excitation are proposed to reconstruct the samples. Using correlation analysis, the structure of a manoeuvring model is simplified. Combined with the measures proposed, support vector machines based identification is employed to determine the hydrodynamic coefficients in a modified Abkowitz model. Experimental data from the free-running model tests of a KVLCC2 ship are analyzed and the hydrodynamic coefficients are identified. Based on the regressive model, simulation of manoeuvres is conducted. Comparison between the simulation results and the experimental results demonstrates the validity of the proposed measures.  相似文献   

2.
This paper presents an experimental investigation on the manoeuvring characteristics of a pusher-barge system for deep (H/d>3) and shallow water (H/d=1.3) condition. Since, the operation of pusher-barge mainly concentrates on confined waters, there is a need to predict and analyze the manoeuvring characteristic of the system for a safe and acceptable performance. A time domain simulation programme was developed for this purpose. A series of model experiments were carried out to determine the hydrodynamic coefficients using a planar motion mechanism (PMM). The time domain simulation shows the manoeuvring characteristic in the form of turning circle trajectories and zig-zag manoeuvre based on the hydrodynamic coefficients, which were derived based on experimental results. The manoeuvring characteristics in shallow and deep water conditions were compared through the simulation results. A comparison of simulation results based on experimental and empirical driven coefficients for both conditions shows that the experimental coefficients gave better manoeuvring characteristics for both turning circle trajectories and zig-zag manoeuvre.  相似文献   

3.
船舶机动定位技术及其实现方法   总被引:1,自引:0,他引:1  
为改善动力定位船舶在高海情下的定位能力,研究了机动定位的控制方式,并设计了一种机动定位模糊控制系统。其特点是模仿人类的航海技巧,通过充分利用环境力,实现船舶的定位与机动。仿真结果表明,在高海情下,机动定位方式可以实现较高精度的定位控制,并且其辅推功率消耗较小。  相似文献   

4.
In this work a method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and System Identification procedure is investigated, considering as test case a rather slender twin screw and two rudders ship. The approach consists in the estimation of the hydrodynamic coefficients applying System Identification to a set of free running manoeuvres obtained from an in-house unsteady RANS equations solver, which substitute the usually adopted experimental tests at model or full scale. In this alternative procedure the numerical quasi-trials (in terms of kinematic parameters time histories and, if needed, forces time histories) are used as input for the System Identification procedure; the aim of this approach is to reduce external disturbances that, if not properly considered in the mathematical model, may compromise the identification results, or at least amplify the well-known “cancellation effects”. Furthermore, the CFD results provide information both in terms of flow field variables and hydrodynamic forces on the manoeuvring ship. These data may be adopted for a better understanding of the complex flow during manoeuvres, especially at stern, providing also additional information about the interaction between the various appendages (including rudders) and the hull. The identification procedure is based on an off-line genetic algorithm used for minimizing the discrepancy between the reference manoeuvres from CFD and those simulated with the system based modular model. The discrepancy was measured considering different metric functions and simplified formulations which consider only the main macroscopic parameters of the manoeuvre; the metrics have been analyzed in terms of their capability in reproducing the time histories and in limiting the cancellation effect of the hydrodynamic derivatives.  相似文献   

5.
We present an experimental investigation of a free-running manoeuvring inland waterway ship at extreme shallow water conditions. Physical tests of zig-zag manoeuvres at two different water depths were performed in model scale and investigated with regards to the effects of limited under-keel clearance. Experimental data comprise results from repeatability studies and may serve for validation of manoeuvring simulations.  相似文献   

6.
Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. From this point of view, actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are commonly used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical phenomena which characterise the operating propeller in off-design condition, namely the in-plane loads that are of paramount importance when considering non-standard or unusual propeller/rudder arrangements. In order to emphasize the importance of these components (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle manoeuvre of a self-propelled fully appended twin screw tanker-like ship model with a single rudder is simulated by the unsteady RANS solver χnavis developed at CNR-INSEAN; several propeller models able to include the effect of the strong oblique flow component encountered during a manoeuvre have been considered and compared. It is emphasized that, despite these models account for very complex and fundamental physical effects, which would be lost by a traditional actuator disk approach, the increase in computational resources is almost negligible. The accuracy of these models is assessed by comparison with experimental data from free running tests. The main features of the flow field, with particular attention to the vortical structures detached from the hull are presented as well.  相似文献   

7.
This paper presents a Recursive Neural Network (RNN) manoeuvring simulation model for surface ships. Inputs to the simulation are the orders of rudder angle and ship’s speed and also the recursive outputs velocities of sway and yaw. This model is used to test the capabilities of artificial neural networks in manoeuvring simulation of ships. Two manoeuvres are simulated: tactical circles and zigzags. The results between both simulations are compared in order to analyse the accuracy of the RNN. The simulations are performed for the Mariner hull. The data generated to train the network are obtained from a manoeuvrability model performing the simulation of different manoeuvring tests. The RNN proved to be a robust and accurate tool for manoeuvring simulation.  相似文献   

8.
公交行程时间的精确预测对于提升公交吸引力具有重要意义。本文基于公交车到离站的历史数据,综合考虑时间周期、站点、站间距离、天气等多个因素,建立了基于BP神经网络的公交车静态行程时间预测模型,以该模型为基础,采用动态迭代的方法,叠加多个站间行程时间预测结果,进一步构建了面向连续站点的公交车动态行程时间预测模型,实现对跨越多个站点的公交行程时间预测。以青岛市125路公交为例对算法进行测试。在模型的横向对比实验中,本模型预测结果的绝对误差均在50 s以内,平均绝对误差百分比(MAPE)为11.74%,均方根误差(RMSE)为23.15,R2的确定系数为0.905 1,SVM的MAPE、RMSE、R2 误差指标分别为:12.38%、38.33、0.743 6,LR对应的误差指标分别为:12.50%、25.59、0.884 1;在静态模型与动态模型的对比实验中,动态模型预测结果的MAPE为11.75%,RMSE为23.15,静态模型对应误差指标分别为:11.63%、26.74。研究结果表明,基于BP神经网络的公交动态行程时间预测模型比传统的静态预测方法具有更高的预测精度。  相似文献   

9.
This paper describes how simplified auxiliary models—metamodels—can be used to create benchmarks for validating ship manoeuvring simulation models. A metamodel represents ship performance for a limited range of parameters, such as rudder angles and surge velocity. In contrast to traditional system identification methods, metamodels are identified from multiple trial recordings, each containing data on the ship’s inherent dynamics (similar for all trials) and random disturbances such as environmental effects and slightly different loading conditions. Thus, metamodels can be used to obtain these essential data, where simple averaging is not possible. In addition, metamodels are used to represent a ship’s behaviour and not to obtain physical insights into ship dynamics. The experimental trials used for the identification of metamodels can be found in in-service recorded data. After the metamodel is identified, it is used to simulate trials without substantial deviations from the ship state parameters used for the identification. Subsequently, the predictions of the metamodels are compared with the predictions of a tested manoeuvring simulation model. We present two case studies to demonstrate the application of metamodels for moderate turning motions of two ships.  相似文献   

10.
The use of an unsteady computational fluid dynamic analysis of the manoeuvring performance of a self-propelled ship requires a large computational resource that restricts its use as part of a ship design process. A method is presented that significantly reduces computational cost by coupling a blade element momentum theory (BEMT) propeller model with the solution of the Reynolds averaged Navier Stokes (RANS) equations. The approach allows the determination of manoeuvring coefficients for a self-propelled ship travelling straight ahead, at a drift angle and for differing rudder angles. The swept volume of the propeller is divided into discrete annuli for which the axial and tangential momentum changes of the fluid passing through the propeller are balanced with the blade element performance of each propeller section. Such an approach allows the interaction effects between hull, propeller and rudder to be captured. Results are presented for the fully appended model scale self-propelled KRISO very large crude carrier 2 (KVLCC2) hull form undergoing static rudder and static drift tests at a Reynolds number of 4.6×106 acting at the ship self-propulsion point. All computations were carried out on a typical workstation using a hybrid finite volume mesh size of 2.1×106 elements. The computational uncertainty is typically 2–3% for side force and yaw moment.  相似文献   

11.
For a general symmetric Spread Mooring System .(SMS), the five necessary and sufficient conditions for stability are derived analytically. It is shown that only two conditions are dominant in symmetric ship moorings. The equations derived in this paper provide analytical means for determining static and dynamic loss of stability, as well as elementary singularities and roots to chaos, of symmetric SMS configurations, such as those recommended by the American Petroleum Institute. Thus, first it becomes easy to identify the morphogenesis occurring when a bifurcation boundary is crossed; and second, it is possible to determine the dependence of a symmetric SMS on any design parameter—such as mooring line length, orientation, pretension, etc. Theoretical results are verified by comparison to numerical results generated with nonlinear dynamics and codimension one and two bifurcation theory. The mathematical model of the SMS consists of the nonlinear third order manoeuvring equations without memory of the horizontal plane slow motion dynamics—surge, sway, and yaw—of a vessel moored to several terminals. Mooring lines are modeled as synthetic nylon ropes, chains, or steel cables. External excitation consists of time independent current, wind, and mean wave drift forces.  相似文献   

12.
With the accelerated warming of the world, the safety and use of Arctic passages is receiving more attention.Predicting visibility in the Arctic has been a hot topic in recent years because of navigation risks and opening of ice-free northern passages. Numerical weather prediction and statistical prediction are two methods for predicting visibility. As microphysical parameterization schemes for visibility are so sophisticated, visibility prediction using numerical weather prediction models inclu...  相似文献   

13.
Squat prediction in muddy navigation areas   总被引:1,自引:0,他引:1  
Common squat prediction formulae to assess the navigation safety usually do not take into account the bottom condition. Nevertheless, the presence of a fluid mud layer is not an uncommon condition in confined areas where accurate squat predictions are necessary. From 2001 to 2004 an extensive experimental research program was carried out to measure the manoeuvring behaviour of deep drafted vessels in muddy areas. A part of the program focused on the undulations of the water-mud interface and their relationship to the ship’s squat. Mostly the sinkage of the ship is damped due to the presence of the mud layer, but a larger trim can occur due to the water-mud interface undulations. This article presents a mathematical model to predict the squat in muddy navigation areas.  相似文献   

14.
This paper considers the problem of intelligent behaviour-based team unmanned underwater vehicles (UUVs) cooperation and navigation, especially in a water flow environment. Animals often have behaviour which aims to maintain them living as groups. We learn from animals’ typical group behaviour and develop behaviour-based rules for team cooperation of UUVs. We create simulation scenarios in which a team of vehicles cooperate to track a target in a water current environment. This paper customises several behaviour-based rules to satisfy the requirement of the desired scenarios. We use fuzzy logic controllers to set different priority weights for each rule on-line according to the situation that the vehicles meet. The decision of the vehicle's next step steering direction is made by the combination of these rules multiplied by the relative priority weights. The line-of-sight guidance law is modified as the navigation rule in a water flow environment. The dynamic manoeuvring model of a real small UUV, SUBZERO III, is used in the simulation. The simulation results indicate that the entire system is successful in reaching the target without any collision within the scenario. The different trajectories and travel times are compared and discussed when normal and modified line-of-sight guidance rules are applied.  相似文献   

15.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

16.
基于分布式控制力矩陀螺的水下航行器轨迹跟踪控制   总被引:2,自引:0,他引:2  
基于控制力矩陀螺群(CMGs)的水下航行器具有低速或零速机动的能力。采用基于分布式CMGs的水下航行器方案,并研究其水平面的轨迹跟踪控制问题。通过全局微分同胚变换将非完全对称的动力学模型解耦成标准欠驱动控制模型,并根据简化的模型构建其轨迹跟踪的误差动力学模型,将轨迹跟踪控制问题转化为误差模型镇定问题。基于一种分流神经元模型和反步法设计了系统的轨迹跟踪控制律,该控制器不需要对任何虚拟控制输入进行求导计算,且能确保跟踪误差的最终一致有界性。仿真结果表明该控制器能够实现在不依赖动力学参数先验知识的情况下对光滑轨迹的有效跟踪。  相似文献   

17.
Estimation and analysis of the uncertainty introduced by using a numerical model for the investigation and study of any type of flow problem have become common industry practice. Through understanding and evaluation of the uncertainty introduced by a numerical model, the accuracy and applicability of the model itself are evaluated. In this paper, the numerical uncertainty of a CFD-methodology developed to analyse the hydrodynamic performance of a collective and cyclic pitch propeller (CCPP) is estimated and analysed. The CCPP is a novel propulsion and manoeuvring concept for autonomous underwater vehicles, aimed to generate both propulsion and manoeuvring forces through advanced control of the propeller's blade pitch. The numerical uncertainty is established for three performance parameters, the generated propulsive force, the side-force magnitude, and the side-force orientation, by conducting a grid and time-step refinement study over three operational conditions. Additionally, the influence of the oscillatory uncertainty, introduced by the periodic nature of the problem, is investigated although shown to have a minimal effect when properly monitored. Based on a least-squares regression analysis of the refined simulation results, the numerical uncertainty is proven to be dominated by the introduced discretisation errors. In the case of the propulsive and side-force magnitude, the total uncertainty is dictated by the time discretisation uncertainty under bollard pull conditions, while the total uncertainty of the captive cases is mainly a result of the spatial discretisation uncertainty. The total uncertainty in the side-force orientation is observed to be primarily a consequence of the time discretisation uncertainty for all simulated cases. Overall, the total uncertainty for captive cases can be considered satisfactory for all three performance parameters, while further work is needed to reduce the observed uncertainty of the simulations under bollard pull conditions.  相似文献   

18.
This paper describes how to estimate the uncertainty of manoeuvring sea trial results without performing repeated tests using only a simulation model. The approach is based on the Monte Carlo method of uncertainty propagation. Moreover, the global sensitivity analysis procedure based on variance decomposition is described. As an example, the method is applied to estimate the uncertainty of 10°/10° zigzag overshoot angles and a 20° turning circle advance and tactical diameter for a small research vessel. The estimated uncertainty is compared with corresponding experimental uncertainty assessed from repeated tests. The method can be useful for validation studies and other studies that involve the uncertainty of sea trial results.  相似文献   

19.
针对复坡堤越浪量的计算问题,提出了采用随机森林算法预测越浪量的方法。首先,通过对欧洲CLASH数据集进行筛选,挑选出符合复坡堤越浪量预测的数据;其次,对数据做无量纲化处理,建立以随机森林为基础的复坡堤越浪量预测模型,并通过网格搜索(GridSearchCV)方法对模型进行调参以改善模型的性能;最后,利用决定系数R~2来评估模型的精度,并将随机森林模型与集成神经网络模型做了预测能力的对比,同时还给出了随机森林模型各个特征参数对预测精度的重要性。结果显示,随机森林模型的决定系数为92.7%,集成神经网络模型的决定系数为87.7%,表明随机森林模型对越浪量具有更强的学习和预测能力。通过对特征重要性的分析,墙顶高程对模型预测精度的影响最大,堤顶高程次之,堤脚宽度影响最小。  相似文献   

20.
多因素动态生成系数法是目前集装箱吞吐量预测方法中最为成熟、应用最为广泛的预测方法。该办法首先确定外贸年增长率预测外贸量,然后通过生成系数得到集装箱吞吐量预测值。然而,在进行中长期集装箱吞吐量预测时,未来外贸年增长率的确定经常缺乏依据,导致长期预测结果精度较差。论文通过利用逻辑斯蒂增长模型进行中长期经济增长预测,再利用经济增长与外贸量的回归分析进行外贸量预测来解决这一问题,最终完成了天津港2005~2020年集装箱吞吐量预测的任务。从原理和结果上看,逻辑斯蒂增长模型是更为适宜和先进的方法,可以用来改进多因素动态生成系数法,提高中长期集装箱预测的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号