首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82·10?5 S.I. and 28 to 75·10?5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6 %, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry. © Elsevier, Paris  相似文献   

2.
《Geodinamica Acta》1998,11(6):271-283
The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82 · 10−5 S.I. and 28 to 75 · 10−5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6%, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry.  相似文献   

3.
断裂带构造岩的方解石组构综合分析,可以推断构造活动的应力场方位,利用e双晶的C—T(C—压应力轴,T—张应力轴)图解推断古应力的方位,已为众多的地质学家在实践中引用。云南白秧坪东矿区推覆构造的华昌山断裂带和水磨房断裂带,是矿区的主要控矿构造,其构造岩的方解石及e双晶极点组构均显示点极密加环带的型式,大部分发育近岩组坐标c轴的光轴极密,代表光轴方向的压力导致沿岩组坐标ab面滑动;在C—T应力系统中,显示华昌山、水磨房断裂带晚期较强烈活动的应力场方位,主压应力方向为SE-NW向,主张应力方向为NE-SW向,断层以左旋运动为主;华昌山断裂带SE盘往NW方向逆冲,水磨房断裂带则由NW往SE方向反冲,与野外宏观构造分析吻合。  相似文献   

4.
The magnetic fabric of 306 samples from 51 sites was determined by means of a new, low-field anisotropy technique. The within-site consistency of the magnetic-fabric data was extremely high and was comparable with more tedious standard petrofabric analyses, where available, and with the structural properties of previously defined tectonic zones in North Cornwall. These data confirm the applicability of magnetic-fabric studies to structural problems, particularly in determining the orientation of the strain in the rocks. In areas of low strain, the technique appears applicable where standard petrofabric techniques are too coarse or time-consuming and indicates that direct estimates of both the magnitude and direction of the net strain ellipsoid should be possible in less deformed areas. Magnetic fabric studies therefore confirm the tectonic zonation in this region and provide a rapid method for similar structural evaluations.  相似文献   

5.
湖北大冶铁山矿区构造的岩组分析   总被引:1,自引:0,他引:1  
本文采用了方解石光轴优选方位、e双晶C—T图法、以及两种用e双晶页理估算应力大小的动力学方法,对鄂东大冶铁山矿区的大理岩进行了岩组学的研究,根据所得资料的分析及相互印证,得出了若干结论。是一次运用岩组分析配合地区构造研究的尝试。  相似文献   

6.
通过对青峰韧性剪切带中糜棱岩的磁性组构研究,同时与常规主应变分析方法所测结果比较,表明岩石磁化率各向异性椭球体与应变椭球体之间有一定的对应关系。磁性组构的特征为构造岩变形机制,以及断裂带的运动学、动力学等的研究提供了一种比较可靠、准确、方便的方法。  相似文献   

7.
河北三家金矿区构造研究及找矿方向   总被引:3,自引:0,他引:3       下载免费PDF全文
文章论述了青龙县三家金矿区构造特征、矿床特征、矿床与断裂构造的成因联系。在多种手段综合研究的基础上,指出了矿区导矿构造和容矿构造,提出了本区中生代的三期主要构造应力场,强调了矿区内局部应力场与相应方向的优势节理相配合是本区金矿床形成的主要模式。在综合分析各项研究成果的基础上提出了本区控矿因素及找矿方向。  相似文献   

8.
湖南郴州枞树板铅锌矿X光组构分析   总被引:1,自引:0,他引:1  
作者通过对湖南郴州枞树板铅锌矿围岩及含矿构造带岩石的X光岩组分析,认为在构造变形过程中,原岩粒度越细,对变形的反映越敏感。在相同的变形条件下,较细的变质砂岩石的石英定向组构比较粗的变质砂岩内明显,板岩和粉砂质板岩的定向组构最明显。枞树板地区近EW向褶皱变形组构表现强烈,近SN向褶皱变形组构较弱。矿化热液的蚀变作用破坏了岩石中早期褶皱变形组构,但铅锌矿脉内的石英没有明显的生长组构,说明在矿化和含矿石英脉成生过程中没有明显的张性充填结晶表现,而是一种以交代为主的矿化形式。这与从其它地质地球化学研究取得的关于本  相似文献   

9.
张有瑜  王彪 《现代地质》1997,11(1):29-35,T001
泥页岩组构意指构成泥页岩的成分单位(分散颗粒、矿物晶体和胶结物等)的空间定向性。首先详细地论述了利用X射线衍射仪进行泥页岩组构分析的基本原理和实验方法,而后为便于定量地描述泥页岩的组构特征,引入了“定向度”概念并据此把泥页岩组构分成5种类型,进而详细地论述了实际样品分析中的定向度计算方法以及渤海湾盆地黄骅坳陷(大港油田)部分泥页岩样品的计算实例  相似文献   

10.
Clay fabrics in relation to the burial history of shales   总被引:1,自引:0,他引:1  
MANUEL SINTUBIN 《Sedimentology》1994,41(6):1161-1169
Quantitative appraisal of compaction strain is essential for the study of the burial history of shales in sedimentary basins. The results of a preliminary fabric analysis of Westphalian and Zechstein shales in the Campine Basin (Belgium) show that clay fabric analysis, using an X-ray pole figure goniometer, is suitable for this purpose. Clay fabrics, in the range studied, are independent of depth and therefore cannot be used as depth indicators. This suggests that in the early stages of the burial history a stable clay fabric has to develop, which will basically remain unchanged during the subsequent burial history. The degree of clay particle preferred orientation not only reflects the compaction strain, but is also determined by mineralogical parameters: the presence of non-platy particles and the relative concentrations of the different clay minerals. This degree of preferred orientation furthermore determines the degree of fissility of the shales. These mineralogical factors limit the use of clay fabrics as truly quantitative strain markers. Their use as semi-quantitative strain markers remains advantageous, mainly because of the common occurrence of clay fabrics in the geological record. Moreover, the relative ease of measurement and the possibility of distinguishing compaction from tectonic strains favour the use of clay fabrics in the quantitative strain analysis of argillaceous rocks.  相似文献   

11.
A methodical gravel-fabric analysis has been made based upon the measurement of orientation and form of 3,300 pebbles. The study was carried out in glaciofluvial deposits in the Randers-Djursland area, Denmark.It is demonstrated that particles with axial ratios less than 0.8 are usable in gravel-fabric analysis and that shape does not essentially affect the orientation. The fabric pattern is found to be independent of particle size but an upper size limit exists above which the particles cannot obtain a preferred orientation. Further it is shown that a significant preferred orientation of the a/b planes occurs only when the particle dip is greater than about 20°.  相似文献   

12.
The effect of deformation history on the development of crystallographic preferred orientation in quartzities has been simulated using a computer program based on the Taylor-Bishop-Hill analysis. Model quartzities with different combinations of glide systems have been subjected to various coaxial and non-coaxial deformation histories. It is possible to obtain information from the fabrics that develop during simple histories; for example, the location of the axis of extension is generally associated with a pole free area on a c-axis plot, and progressive axial shortening, plane strain and axial shortening produce characteristic fabrics. In progressive simple shear the fabric skeleton becomes asymmetric relative to the sense of shear and a-axes preferentially align in the flow plane parallel to the flow direction. However, this example illustrates that the fabric orientation and characteristics are controlled by the kinematic framework and bear only an indirect relationship to the finite strain accumulated to that point in the history.The imprint of the closing stages of deformation limits to some degree the use of crystallographic fabrics as a tool for structural geologists, but in favourable circumstances data can be obtained concerning characteristics of the deformation history, on the scale of the hand-specimen, for the last part of this history.  相似文献   

13.
The crystallographic preferred orientation of hematite in banded iron ores and the orientation of both the measured and the calculated principal susceptibility axes are strongly related. The maximum susceptibility is aligned with the lineation and the pole of the foliation coincides with the minimum susceptibility, although there are often distinct differences between the measured and calculated values of the susceptibilities. A wide variety of configurations of c-axis pole figures modeled by varying the parameters of the Bingham distribution and Bingham–Mardia-distribution reveal that quite different c-axis patterns of hematite ores may have the same anisotropy of the magnetic susceptibility (AMS) parameters. Large deviations between calculated and experimental AMS-data should initiate further investigations to resolve a probably unnoticed heterogeneity of the fabric. The present investigations show that the structural analysis of the preferred orientation of hematite ores by means of the rather inexpensive and fast magnetic method must be accompanied by the more expensive but unambiguous determination of preferred orientation by x-ray and neutron diffraction experiments in order to accomplish a complete and sound interpretation.  相似文献   

14.
磁组构是由岩石中磁性矿物定向分布而产生的组构特征,因此磁组构分析是研究岩石组构常用的技术手段,它具有 见效快、灵敏度高、无损样品等特点,近年来得到广泛应用。然而在磁组构研究工作中钻取定向样品或定向手标本时,常 常会遇到天然样品含有裂缝且裂缝中充填大量近地表沉积物和自生矿物。本文针对辉绿岩裂缝充填物对其磁组构结果的影 响程度做了详细研究,选用160个含裂缝的辉绿岩岩芯定向样品,通过对比去除裂缝充填物前后的磁组构变化,发现实验 前后所有样品磁化率大小变化率平均值<1%,磁组构方向变化平均值<1°,因此认为辉绿岩裂缝物质对其磁组构影响甚微。 矿物学和岩石磁学分析表明裂隙充填物主要为石英、长石,以及少量赤铁矿、黄铁矿和绿泥石等表生矿物。而辉绿岩的携 磁矿物主要是亚铁磁性的磁铁矿,其磁化率强度约为同等质量裂缝填充物的30倍,致使辉绿岩中的裂隙充填物对磁组构的 影响很小。  相似文献   

15.
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism <c> slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.  相似文献   

16.
岩石组构学研究的最新技术——电子背散射衍射(EBSD)   总被引:10,自引:0,他引:10  
岩石组构分析是构造地质学研究的一项基础工作,对理解许多地质过程非常关键。岩石组构学的理论研究和测试技术手段都有很大发展,取得了许多重要成果。最近十几年来,装备在扫描电镜上的电子背散射衍射(EBSD)新技术日臻成熟,已经成为地球科学和材料科学组构分析的强有力手段。作为革命性的新技术,EBSD的量化显微构造数据在地质学研究中具有广泛的应用前景,例如相鉴定、变形机制、位错滑移系、结晶学优选方位(CPO)和变质过程研究等。本文介绍了池际尚教授在开拓我国岩石组构学教学和科学研究以及人才培养方面的重要贡献,同时阐述了EBSD的仪器组成、基本原理和应用范围及其与费氏台、X射线衍射、中子衍射和透射电镜优缺点的对比,并展示了该方法在大别-苏鲁超高压榴辉岩组构分析中的应用。  相似文献   

17.
The 616 ± 3 Ma (Ediacaran) Egersund doleritic dike swarm cuts across the Rogaland anorthosite province and its granulitic country rocks, in SW Norway. The structure of eight out of eleven main dikes of the swarm was investigated using the anisotropy of magnetic susceptibility (AMS) technique. Thermomagnetic data and values of the bulk magnetic susceptibility reveal a magnetic mineralogy dominated by Ti-poor titanomagnetite. Magnetic fabric and global petrofabric are coaxial, except in sites strongly affected by hydrothermal alteration, as demonstrated through image analysis. Asymmetrical dispositions of the magnetic foliation and lineation support the existence of a syn-emplacement, sinistral strike-slip shearing resolved on dike walls. Such asymmetrical fabrics are attributed to a transtension tectonic regime, in a context of oblique extension during the continental rifting phase which preceded the opening of the Iapetus Ocean along the SW margin (present-day orientation) of Baltica.  相似文献   

18.
衡山岩体西缘韧性剪切带磁性组构研究   总被引:1,自引:1,他引:1  
张志强 《湖南地质》1989,8(2):23-27
本文对采自衡山花岗岩体西缘韧性剪切带的标本进行了岩石磁性组构研究,并将其与常规应变分析方法所得结果予以比较,表明了岩石磁化率各向异性椭球体与应变椭球体之间有一定的对应关系,岩石磁化率各向异性技术可望成为构造地质学的一种新手段。岩石磁性组构资料可应用于变形岩石的应变分析,特别是在没有宏观应变标志或者通常的岩石组构分析方法太费时间的情况下更显出其优越性。  相似文献   

19.
Granulite facies tonalitic gneiss, mafic granulite and late metadolerite dykes from Bremer Bay in the Mesoproterozoic Albany Mobile Belt yield palaeomagnetic remanence that were acquired between ca 1.2 Ga and 1.1 Ga. A well‐constrained pole (66.6°N, 303.7°E) fits the ca 1.2 Ga part of the Precambrian Australian apparent polar wander path. This pole is in agreement with the high‐latitude position of Australia at ca 1.2–1.1 Ga shown on some Rodinia reconstructions. More data are required before any significance can be attributed to a second, poorly defined pole (41.8°S, 243.7°E) that falls at some distance from the ca 0.8 Ga part of the Australian apparent polar wander path. Magnetic anisotropy measurements from all samples except late granite dykes indicate northeast‐southwest elongation (i.e. parallel to the local trend of the orogenic belt) and northwest‐southeast contraction. This is in agreement with the orientation of principal strain axes deduced from structures formed during late stages of ductile deformation. The mean magnetic fabric lineation (long axis of the strain ellipsoid) is subparallel to a mineral elongation lineation and the axes of late upright to inclined folds. Short axes of the strain ellipsoid determined from magnetic fabric measurements are in a similar orientation to poles to the axial surfaces of these folds and to the associated cleavage. This mean shortening axis bisects late conjugate ductile shear zones that overprint the folds. This study has shown that structurally complex high‐grade gneisses and intrusive rocks with variable timing relationships may yield meaningful palaeomagnetic results for late stages of metamorphism. Magnetic anisotropy analysis is also seen to be a valuable tool in providing principal strain directions for late ductile deformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号