首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   

2.
3.
Vlasenko  Vasiliy  Stashchuk  Nataliya  McEwan  Robert 《Ocean Dynamics》2013,63(11):1307-1320

Evolution of a large-scale river plume is studied numerically using the Massachusetts Institute of Technology general circulation model. The model parameters were set close to those observed in the area of the Columbia River mouth. The fine-resolution grid along with the non-hydrostatic dispersion included in the model allowed for the reproduction of detailed inner plume structure, as well as a system of internal waves radiated from the plume’s boundary. It was found that not only first-mode but also second- and third-mode internal waves are radiated from the plume at the latest stages of its relaxation when the velocity of the front propagation drops below an appropriate wave phase speed of internal baroclinic mode. The model output shows that the amplitude of these high-mode waves is of the same order as the leading first-mode waves, which in combination with the specific vertical structure (location of the maximum structure function beyond the pycnocline layer) creates favourable conditions for the generation of shear instabilities. High-resolution model output also reveals evidence of a fine internal structure of the plume characterized by the presence of secondary fronts inside the plume and secondary internal wave systems propagated radially from the lift-off area to the outer boundary. These structures intensify the mixing processes within the propagating plume with predominance of the entrainment mechanism developing on the lower boundary between the plume’s body and underlying waters. The scheme of horizontal circulation in the plume was reproduced by the methodology of Lagrange drifters released near the mouth at different depths.

  相似文献   

4.
An earth model with a transition layer (anisotropic inhomogeneous) is considered. The inhomogeneity in σv (vertical conductivity) of the transition layer is represented by a power law variation. Expressions for potential distribution in the upper layer, transition layer and bottom layer are obtained by solving appropriate differential equation for each layer. By utilizing the boundary conditions, expressions of apparent resistivity for Wenner and Schlumberger configurations are derived. Numerical analysis is performed for linear and quadratic variation of σv. The results are presented in the form of theoretical apparent resistivity curves for both configurations. Negative apparent resistivities are the interesting feature of this analysis.  相似文献   

5.
Borehole Breakouts in Berea Sandstone Reveal a New Fracture Mechanism   总被引:6,自引:0,他引:6  
— Vertical drilling experiments in high-porosity (22% and 25%) Berea sandstone subjected to critical true triaxial far-field stresses, in which σ H (maximum horizontal stress) >σ v (vertical stress) >σ h (least horizontal stress), revealed a new and non-dilatant failure mechanism that results in thin and very long tabular borehole breakouts that have the appearance of fractures, and which counterintuitively develop orthogonally to σ H . These breakouts are fundamentally different from those induced in crystalline rocks, as well as limestones and medium-porosity Berea sandstone. Breakouts in these rocks are typically dog-eared in shape, a result of dilatant multi-cracking tangential to the hole and subparallel to the maximum far-field horizontal stress σ H , followed by progressive buckling and shearing of detached rock flakes created by the cracks. In the high-porosity sandstone a narrow layer of grains compacted normal to σ H is observed just ahead of the breakout tip. This layer is nearly identical to “compaction bands” observed in the field. It is suggested that when a critical tangential stress concentration is reached along the σ h spring line at the borehole wall, grain bonding breaks down and a compaction band is formed normal to σ H . Debonded loose grains are expelled into the borehole, assisted by the circulating drilling fluid. As the breakout tip advances, the stress concentration ahead of it persists or may even increase, extending the compaction band, which in turn leads to breakout lengthening.  相似文献   

6.
Uncertainties in some key parameters in land surface models severely restrict the improvement of model capacity for successful simulation of surface-atmosphere interaction. These key parameters are related to soil moisture and heat transfer and physical processes in the vegetation canopy as well as other important aerodynamic processes. In the present study, measurements of surface-atmosphere interaction at two observation stations that are located in the typical semi-arid region of China, Tongyu Station in Jilin Province and Yuzhong Station in Gansu Province, are combined with the planetary boundary layer theory to estimate the value of two key aerodynamic parameters, i.e., surface roughness length z0m and excess resistance κB-1. Multiple parameterization schemes have been used in the study to obtain values for surface roughness length and excess resistance κB-1 at the two stations. Results indicate that z0m has distinct seasonal and inter-annual variability. For the type of surface with low-height vegetation, there is a large difference between the default value of z0m in the land surface model and that obtained from this study. κB-1 demonstrates a significant diurnal variation and seasonal variability. Using the modified scheme for the estimation of z0m and κB-1 in the land surface model, it is found that simulations of sensible heat flux over the semi-arid region have been greatly improved. These results suggest that it is necessary to further evaluate the default values of various parameters used in land surface models based on field measurements. The approach to combine field measurements with atmospheric boundary layer theory to retrieve realistic values for key parameters in land surface models presents a great potential in the improvement of modeling studies of surface-atmosphere interaction.  相似文献   

7.
Satellite ocean color images were used to determine the space-time variability of the Amazon River plume from 2000–2004. The relationship between sea-surface salinity (SSS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) absorption coefficient for dissolved and detrital material (adg) (r2=0.76, n=30, rmse=0.4) was used to identify the Amazon River plume low-salinity waters (<34 psu). The plume's spatial information was extracted from satellite bi-weekly time series using two metrics: plume area and plume shape. These metrics identified the seasonal variability of plume dimensions and dispersion patterns. During the study period, the plume showed the largest areas from July to August and the smallest from December to January. The mean annual amplitude and the mean, maximum and minimum plume areas were 1020×103 km2, 680×103 km2, 1506×103 km2 and 268×103 km2, respectively. Three main shapes and dispersion pattern periods were identified: (1) flow to the northeastern South American coast, in a narrow band adjacent to the continental shelf, from January to April; (2) flow to the Caribbean region, from April to July; and (3) flow to the Central Equatorial Atlantic Ocean, from August to December. Cross-correlation techniques were used to quantify the relationship between the plume's spatial variability and environmental forcing factors, including Amazon River discharge, wind field and ocean currents. The results showed that (1) river discharge is the main factor influencing plume area variability, (2) the wind field regulates the plume's northwestward flow velocity and residence time near the river mouth, and (3) surface currents have a strong influence over river plume dispersion patterns.  相似文献   

8.
We present Prognoz-8 observations of low-frequency plasma waves (2-105 Hz) associated with plasma fluxes near the outer boundary of the plasma sheet. These plasma fluxes were different from the regular plasma sheet boundary layer and consisted of tailward flowing warm proton and cold oxygen beams accompanied by rather cold electrons (T e less than 100 eV). Observed plasma characteristics were used in the numerical solution of the dispersion relation for the ion-beam acoustic instability. Detailed analysis shows that this instability can be a source of observed emissions at frequencies up to 25 Hz.  相似文献   

9.
Geological storage of carbon dioxide (CO2) is a promising technology for reducing atmospheric emissions. The large discrepancy in the time- and length-scales between up-dip migration of buoyant supercritical CO2 and the sinking fingers of dissolved CO2 poses a challenge for numerical simulations aimed at describing the fate of the plume. Hence, several investigators have suggested methods to simplify the problem, but to date there has been no reference solution with which these simplified models can be compared. We investigate the full problem of Darcy-based two-phase flow with gravity-current propagation and miscible convective mixing, using high-resolution numerical simulations. We build on recent developments of the Automatic Differentiation - General Purpose Research Simulator (AD-GPRS) at Stanford. The results show a CO2 plume that travels for 5000 years reaching a final distance of 14 km up-dip from the injection site. It takes another 2000 years before the CO2 is completely trapped as residual (40%) and dissolved (60%) CO2. Dissolution causes a significant reduction of the plume speed. While fingers of dissolved CO2 appear under the propagating gravity current, the resident brine does not become fully saturated with CO2 anywhere under the plume. The overall mass transfer of CO2 into the brine under the plume remains practically constant for several thousands of years. These results can be used as a benchmark for verification, or improvements, of simplified (reduced-dimensionality, upscaled) models. Our results indicate that simplified models need to account for: (i) reduced dissolution due to interaction with the plume, and (ii) gradual reduction of the local dissolution rate after the fingers begin to interact with the bottom of the aquifer.  相似文献   

10.
Following numerous model studies of the global impacts of sub- and supersonic aircraft on the atmosphere, this paper assesses the separate aircraft engine exhaust effects of the 45°N cruise flight and at the 10- and 18-km levels of the July atmosphere. A box diffusion photochemical model in the cross-section plane of the flight trajectory is used to compute the effects of gas-phase and heterogeneous reactions on the condensation trail particles in the troposphere, and on the sulphate aerosols in the stratosphere. The enhanced horizontal dispersion of the exhaust plume is considered in the model.A significant but short term depletion of ozone is predicted, which is 99% restored in about 1 h in the wide plume with enhanced horizontal dispersion, but requires more than 24 h in the narrow plume without it. The oxidation rate of NO and NO2 into the HNO3 depends on the OH content in the exhausts and varies in all the cases. The heterogeneous photochemistry has only a small influence on the initial evolution of N2O5 and HO2 in the plume.  相似文献   

11.
Large projectiles impacting the Earth will cause severe shock heating and chemical reprocessing of the Earth's atmosphere. This occurs during atmospheric entry and, more importantly, as a result of the supersonic plume ejected on impact. In particular, very large amounts of nitric oxide would result from the impact of the putative Cretaceous-Tertiary bolide(s). We present models of the shock chemistry, the conversion of NO to NO2 and thence to nitrous and nitric acids, and the global dispersion of the NO2 and acids. Two plausible projectiles are considered: an ice-rich long-period comet and a much smaller rock-metal asteroid. The comet produces semi-global atmospheric NO2 mixing ratios of 0.1% while the asteroid produces these high mixing ratios only in the immediate region of the impact. The comet produces concentrated nitrous and nitric acid rain with apH ≈ 0–1.5 globally. The asteroid produces rain with apH ≈ 0–1 near the impact and≈ 4–5 globally. Immediate environmental effects of these nitrogen species include inhibition of photosynthesis due to extinction of solar radiation by NO2, foliage damage due to exposure to NO2 and HNO3, toxicosis resulting from massive mobilization of soil trace metals, and respiratory damage due to exposure to NO2. The acid rain decreases the pH of the oceanic mixed layer affecting the stability of calcite with important implications for the survival of calcareous-shelled organisms and for exhalation of CO2 from the mixed layer to the atmosphere. Longer-term environmental effects perhaps≈ 1000years in duration include a global warming due to the sudden CO2 injection and the simultaneous extinction of the ocean micro-organisms which normally help remove CO2 from the atmosphere-mixed layer system. Havens for survival include carbonate-buffered lakes and burrows. This acid rain theory therefore serves to explain the peculiar selectivity of the extinctions seen at the Cretaceous-Tertiary boundary. The first few years of acid rain will lead to massive weathering rates of continental soils characterized by large ratios of the relatively insoluble metals (e.g. Be2+, Al3+, Hg2+, Cu+, Fe2+, Fe3+, Tl3+, Pb2+, Cd2+, Mn2+, Sr2+) to the more soluble metals (Ca2+, Mg2+) which should have left a clear signal in the fossils of neritic organisms and in unperturbed neritic sediments near river deltas if such sediments still exist for the Cretaceous-Tertiary time frame.  相似文献   

12.
Heat and mass transfer processes in the conduit of a thermochemical plume located beneath an oceanic plate far from a mid-ocean ridge (MOR) proceed under conditions of horizontal convective flows penetrating the plume conduit. In the region of a mantle flow approaching the plume conduit (in the frontal part of the conduit), the mantle material heats and melts. The melt moves through the plume conduit at the average velocity of flow v and is crystallized on the opposite side of the conduit (in the frontal part of the conduit). The heat and the chemical dope transferred by the conduit to the mantle flow are carried away by crystallized mantle material at the velocity v.The local coefficients of heat transfer at the boundary of the plume conduit are theoretically determined and the balance of heat fluxes through the side of the plume conduit per linear meter of the conduit height. The total heat generation rate, transmitted by the Hawaiian plume into the upper and lower mantle, is evaluated. With the use of regular patterns of heat transfer in the lower mantle, which is modeled on the horizontal layer, heated from below and cooled from above, the diameter of the plume source, the kinematic viscosity of the melt in the plume conduit, and the velocity of horizontal lower-mantle flows are evaluated and the dependences of the temperature drop, viscosity and Rayleigh number for the lower mantle on the diameter of the plume source are presented.  相似文献   

13.
Following the collapse of the New York World Trade Center (WTC) towers on September 11, 2001, Local, State, and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impacts of emissions from the disaster. The collapse of the World Trade Center towers and associated fires that lasted for several weeks resulted at times in a noticeable plume of material that was dispersed around the Metropolitan New York City (NYC) area. In general, the plume was only noticeable for a short period of time following September 11, and only apparent close to the World Trade Center site. A study of the estimated pathway which the plume of WTC material would likely follow was completed to support the United States Environmental Protection Agency’s 2002 initial exposure assessments. In this study, the WTC emissions were simulated using the CALMET-CALPUFF model in order to examine the general spatial and temporal dispersion patterns over NYC. This paper presents the results of the CALPUFF plume model in terms of plume dilution and location, since the exact source strength remains unknown. Independent observations of PM2.5 are used to support the general dispersion features calculated by the model. Results indicate that the simulated plume matched well with an abnormal increase (600–1000% of normal) in PM2.5 two nights after the WTC collapse as the plume rotated north to southeast, towards parts of NYC. Very little if any evidence of the plume signature was noted during a similar flow scenario a week after September 11. This leads to the conclusion that other than areas within a few kilometers from the WTC site, the PM2.5 plume was not observable over NYC’s background concentration after the first few days.  相似文献   

14.
A series of 707 measurements at Masaya in 2005, 2006, and 2007 reveals that SO2 emissions 15km downwind of the active vent appear to be ~33% to ~50% less than those measured only 5km from the vent. Measurements from this and previous studies indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within the plume each may amount to a maximum of 10% loss, and are not sufficient to account for the larger apparent loss measured. However, the SO2 measurement site 15km downwind is located on a ridge over which local trade winds, and the entrained plume, accelerate. Greater wind speeds cause localized dilution of the plume along the axis of propagation. The lower concentrations of SO2 measured on the ridge therefore lead to calculations of lower fluxes when calculated at the same plume speed as measurements from only 5km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission rates with respect to hazard mitigation, petrologic studies, and sulfur budget calculations, measured fluxes of SO2 must be as accurate as possible. Future campaigns to measure SO2 flux at Masaya and similar volcanoes will require individual plume speed measurements to be taken at each flux measurement site to compensate for dilution and subsequent calculation of lower fluxes. This study highlights the importance of a comprehensive understanding of a volcano’s interaction with its surroundings, especially for low, boundary layer volcanoes.  相似文献   

15.
To assess the environmental perturbation induced by the impact event that marks the Cretaceous–Tertiary (K–T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K–T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds.Across the freshwater K–T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from − 26.15‰ below the boundary clay to − 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K–T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K–T boundary at Dogie Creek (from − 25.32‰ below the boundary clay to − 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate.About 2‰ decrease in δ13C of atmospheric CO2 was expected from the δ13C variation of marine carbonate at the K–T boundary. This δ13C-decrease of atmospheric CO2 should affect the δ13C values of organic matter derived from plant tissue. As such a decrease in δ13C value was not observed at Dogie Creek, a process that compensates the δ13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The δ13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3 becomes an important carbon source, as well as dissolved CO2. As the δ13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the δ13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment.A distinct positive δ13C excursion of 2‰ in the K–T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K–T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K–T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K–T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10 yr) respond to the impact-related environmental perturbations.  相似文献   

16.
17.
One of the main assumptions that renders the stochastic theories applicable to real aquifers is the ergodic hypothesis, i.e. the possibility to exchange ensemble and spatial averages of a variable of interest. The principal aim of this paper is to elucidate the conditions that allow for an exchange between ensemble and spatially averaged second moments of concentration field (Sij); the fulfillment of the ergodic condition underlies the applicability of the dispersion coefficients or other related quantities obtained by the stochastic theories to actual aquifers. The fulfillment of the ergodic hypothesis is assessed here by analyzing the diminishing of the variance of Sij as the initial size of the plume V0 grows, i.e. the tendency of Sij toward its expected value 〈Sij〉. It is shown that it is not always possible to assume ergodicity for solute plumes in heterogeneous aquifers. For the typical plume configurations encountered in applications, transverse and vertical spreading are the most problematic in this respect. In particular, satisfying the ergodic hypothesis depends largely on the initial plume configuration and size, on one hand, and the direction of the moment of interest, on the other. Numerical simulations based on the analytic element method elucidate the results. The relevance of the results is mostly felt for the inference of macrodispersive parameters, which are often derived through Sij. The work indicates that Sij may be a distorted and inadequate measure of the plume spread. This should serve as a warning against application of results based on ensemble averages to real-life plumes, particularly when estimating macrodispersion coefficient from field experiment.  相似文献   

18.
A box and a Gaussian plume model including gas-phase photochemistry and with plume dispersion parameters estimated from the few available plume observations are proposed and used for evaluation of photochemical transformations of exhausts from a single subsonic transport aircraft. The effects of concentration inhomogeneities in the plume cross section on the photochemical sources and sinks in the plume are analyzed for various groups of compounds. The influence of these inhomogeneities on the rate and on the mass of ambient air entrainment into the plume are studied also by comparing the box and the Gaussian plume model simulations during the first hours of their life. Due to the enterance of HOX and NOX from ambient air into the plume with rates varying from the wind shear and turbulence conditions, the rate of emitted NOX oxidation in the plume is dependent on these and also on the background concentration levels of HOX and NOX.  相似文献   

19.
A large aerosol plume with optical depth exceeding 0.7 engulfs most parts of the Arabian Sea during the Asian summer monsoon season. Based on Micro Pulse Lidar observations during the June–September period of 2008 and 2009, the present study depicts, for the first time, the existence of an elevated dust layer occurring very frequently in the altitude band of 1–3.5 km over the west coast of peninsular India with relatively large values of linear depolarization ratio (δL). Large values of δL indicate the dominance of significantly non-spherical aerosols. The aerosol optical depth of this layer (0.2) is comparable to that of the entire atmospheric column during dust-free days. Back-trajectory analysis clearly shows the advection of airmass from the arid regions of Arabia and the west Arabian Sea, through the altitude region centered around 3 km. This is in contrast to the airmass below 1 km originating from the pristine Indian Ocean region which contains relatively spherical aerosols of marine origin with δL generally <0.05.  相似文献   

20.
The differential dispersion of P- and S- body waves is studied in the Friuli area. We estimate theoretically the respective contributions of the source, from dislocation models, and of the propagation, from the Futterman model. We demonstrate the possible existence of differential dispersion, which is interpreted as being due to attenuation. The quality factor QP deduced from this hypothesis shows a regional variation from 15 to 210. Results also indicate a possible dependence of QP on frequency in the range 5–40 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号