首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present coordinated synchronous observations of Active Galactic Nuclei in the radio and optical, aimed at searching for fast (intraday) flux variations and possible correlations in the flux variations in different wavebands. Our observations were performed with the 22-m radio telescope of the Crimean Astrophysical Observatory at 22.2 and 36.8 GHz and the Zeiss-1000 reflector of the Special Astrophysical Observatory in the R filter, using a CCD photometer. We performed five observing runs of 7–10 nights each in 2004–2006. We obtained radio and optical light curves for the variable extragalactic radio sources DA 55, 1633+382, 2134+004, 2145+067, and 2251+158. We detected short-duration flares of DA 55 and 2134+004 in the R band with variations of 0.2 m within about 15 minutes. The other sources did not show any considerable flux variations. The radio flux variations of DA 55 and 2134+004 reached 1.5 Jy in about 15 minutes, and those of 2145+067 reached 2 Jy in 2 hours. We observed chaotic flux variations in 2251+158, by 2–2.5 Jy in half an hour. We detected no correlation between the radiation in the optical and radio.  相似文献   

2.
Classifications of the optical counterparts and radio spectra of nine radio sources are presented. The observations were carried out using the 2.1-m optical telescope in Cananea (Mexico) at 4200–9000 Å and the RATAN-600 radio telescope at 0.97–21.7 GHz. Five objects have been classified as quasars (three have redshifts z>2), two as BL Lac objects, one as an elliptical galaxy, and one as an absorption-line galaxy.  相似文献   

3.
Observations of circumstellar maser emission from the long-period variable R Cas in the 1.35-cm water-vapor line are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in 1980–2003 (JD=2444409–2452724). Over the 23 years of observations, strong flares in the H2O line profile were recorded in 1982 (with a peak flux density up to 400 Jy) and 1986–1989 (up to 750 Jy). Subsequently, from 1990 to March 2003, the H2O line flux was usually below the detection threshold of the radio telescope (<5–10 Jy). Episodic small increases of the emission with peak flux densities of 20–60 Jy were observed. The variations of the H2O line flux F are correlated with variations in the visual brightness of the star. The phase delay Δγ of the F variations relative to the optical light curve of R Cas ranged from 0.2–0.3P during the observations (P=430.46d is the star's period). A model for the variability of the H2O maser in R Cas is discussed. If the variations are due to periodic impacts by shock waves driven by the stellar pulsations, the time for the shock to travel from the photosphere to the inner boundary of the H2O-masing shell may reach 2–4P. The flares could be due to transient episodes of enhanced mass loss by the star or to the propagation of an exceptionally strong shock from the stellar surface.  相似文献   

4.
We present classifications, optical identifications, and radio spectra for eight radio sources from three flux-density-complete samples in the following declination ranges: 4°–6° (B1950), S 3.9 > 200 mJy; 10°–12°30′ (J2000), S 4.85 > 200 mJy; 74°?75° (J2000), S 4.85 > 100 mJy. For all these samples, the right ascensions are 0h–24h and the Galactic latitudes, |b| > 15°. Our optical observations at 4000–7500 ° were made with the 6-m telescope of the Special Astrophysical Observatory; we also observed at 0.97–21.7 GHz with the RATAN-600 radio telescope of the Special Astrophysical Observatory. We classify four of the objects as quasars and four as galaxies. Five of the radio sources have power-law spectra at 0.97–21.7 GHz, while two objects have flat spectra. The quasar J2358+0430 virtually did not vary during 23 years.  相似文献   

5.
Results of a study of a strong flare of H2O maser emission in the star-forming region Sgr B2(M) in 2004 are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. The main emission, with its flux density reaching 3800 Jy, was concentrated in a narrow radial-velocity interval (about 3 km/s) and was most likely associated with the compact group r, while the emission at VLSR > 64 km/s came from group q. After 1994, the variations of the H2O maser emission in Sgr B2(M) became cyclic with a mean period of 3 years.  相似文献   

6.
The paper reports the results of ten-year centimeter-wavelength observations with the RATAN-600 radio telescope of a complete sample of 83 flat-spectrum sources from the GB6 catalog of the MGB Survey, with S 4.85 > 200 mJy at declinations 10°?C12°30??. Starting in 2000, the observations were conducted simultaneously at six frequencies in the range 0.97?C21.7 GHz. Seventy-six sources (including 54 quasars) have been identified with optical objects, which have redshifts in the range z = 0.331?C3.601. Analysis of light curves and spectra at different activity phases has shown that, in most cases, the dynamics of the development of flares is consistent with a model in which the variability results from the evolution of a shock in a radio jet. A relationship between the time scales for the rise and fall of the flares has been found. There is no redshift dependence of the true linear dimensions of the radiating regions and the variability indices obtained over ten years. These facts can be interpreted as an absence of cosmological evolution of quasars at least up to z ?? 3.  相似文献   

7.
We present optical identifications and radio spectra for ten radio sources from two flux-density-complete samples. Radio variability characteristics are presented for four objects. The observations were obtained on the RATAN-600 radio telescope at 0.97–21.7 GHz and the 2.1 m telescope of the Haro Observatory in Cananea, Mexico at 4200–9000 Å. Among the ten objects studied, three are quasars, four are BL Lac objects, two are radio galaxies, and one is a Sy 1 galaxy. Two of the sources identified with BL Lac objects, 0509+0541 and 0527+0331, show rapid variability on time scales of 7–50 days.  相似文献   

8.
We have carried out photometry and spectroscopy of the star V1327 Aql (R = 16 m ) as part of our program of observations of poorly studied cataclysmic variables using the 1.5-m optical Russian—Turkish telescope (RTT-150, Turkey) and the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. After analyzing our photometry, we have re-classified the variable as an RR Lyrae star. Our BV R photometry during 10 nights reveals brightness variations with the period 12h49m, with the B, V, and R amplitudes being 1.36 m , 1.13 m , and 1.11 m , respectively. We derived the first estimates of the star’s atmospheric parameters from our moderate-resolution spectra: T eff = 6280 K, log g = 3.3, [M/H] = ?1.05. The extremely high radial velocity of the star’s motion (V R = ?470 km/s) and the star’s large distances to the Galactic center (13.1 kpc) and disk (4.2 kpc) testify to a probable extragalactic origin of this object.  相似文献   

9.
Optical identifications and an analysis of the radio spectra of eight radio sources from a flux-density-complete sample at declinations 4°–6° (B 1950) are presented. The observations were carried out at 4000–9000 Å on the 6-m telescope of the Special Astrophysical Observatory and at 0.97–21.7 GHz on the RATAN-600 telescope. Five of the eight sources are quasars and three are emission-line radio galaxies.  相似文献   

10.
The flux densities of a uniform sample of extragalactic radio sources in a narrow strip of sky (1° wide in declination with a total area of about 0.1 sr) were monitored for 105 days at 1420 MHz using the 64-m Kalyazin radio telescope. In total, 32 bright sources with flux densities greater than 0.6 Jy have been studied. The statistical properties of the observed flux-density variations are discussed. We detected variability at the 95% confidence level according to the χ 2 test in 4C +27.15 (0516+2740). The flux density variations in this source show the pattern typical of extreme scattering events. There are reasons to classify this source as a blazar.  相似文献   

11.
We present optical identifications, classifications, and radio spectra for 19 radio sources from a complete sample in flux density with declinations 10°–12°30′ (J2000) obtained with the 6-m optical telescope (4000–9000 Å) and RATAN-600 radio telescope (0.97–21.7 GHz) of the Special Astrophysical Observatory. Twelve objects with redshifts from 0.573 to 2.694 have been classiffied as quasars, and two objects with featureless spectra as BL Lac objects. Four objects are emission-line radio galaxies with redshifts from 0.204 to 0.311 (one also displaying absorption lines), and one object is an absorption-line galaxy with a redshift of 0.214. Radio flux densities have been obtained at six frequencies for all the sources except for two extended objects. The radio spectra of five of the sources can be separated into extended and compact components. Three objects display substantial rapid (on time scales from several days to several weeks) and long-term variability of their flux densities.  相似文献   

12.
We present classifications, optical identifications, and radio spectra for 19 radio sources from three complete samples, with declinations 4°–6° (B1950, S 3.9 GHz > 200 mJy), 10°–12°30′ (J2000, S 4.85 GHz > 200 mJy), and 74°–75° (J2000, S 4.85 GHz > 100 mJy). We also present corresponding information for the radio source J0527+0331. The right ascensions are 0–24h and the Galactic latitudes |b| > 15° for all the samples. Our observations were obtained with the 6 m telescope from the Special Astrophysical Observatory in the range 4000–9000 Å or 4000–7500 Å and the RATAN-600 radio telescope at frequencies in the range 0.97–21.7 GHz. We obtained flux densities for the radio sources and optical spectra for their optical counterparts. Nine objects were classified as quasars with redshifts from z = 1.029 to 3.212; nine objects are emission-line galaxies with redshifts from 0.172 to 0.546, and one is a galaxy with burstlike star formation at z = 0.156, and one is a BL Lac object with z = 0.509. The spectra of five radio sources were decomposed into extended and compact components. The radio source J0527+0331, identified with a BL Lac object, displays significant variations of time scales from several days to several years. Data on flux variations are presented for 11 radio sources, as well as their spectra at several epochs.  相似文献   

13.
We present the results of twenty-year observations of a complete sample of 68 flat-spectrum radio sources with flux densities S 3.9 GHz > 200 mJy carried out at centimeter wavelengths with the RATAN-600 radio telescope. Since 1995, we have observed simultaneously at six frequencies between 0.97 and 21.7 GHz. Of the 56 sources identified with optical objects, 41 are quasars with redshifts between 0.293 and 3.263. Based on our analysis of the spectral shapes, we divide the sources into four classes. Changes of spectral class for individual sources are fairly rare. Based on the light curves and spectra, in most cases, a flare’s evolution is in accordance with a model in which the variations result from the evolution of a shock in the radio jet. The main result of our study is that there is no redshift dependence for the true linear sizes of the radiating regions, the variability indices derived for all 20 years of data or for individual flares, or the peak frequencies of the spectra of the compact radio emission. We suggest that this testifies to an absence of cosmological evolution of the sample quasars, at least to z ≈ 3.  相似文献   

14.
Results of systematic observations of a sample of bright H2O maser sources with fluxes, on average, exceeding 200 Jy in their main spectral feature during April–September 2017 (G25.65+1.05, G25.825?0.178, G27.184?0.082, G34.403+0.233, G35.20?0.74, G43.8?0.13, G107.30+5.64) are presented. These observations were carried out in preparation for Very Long Baseline Interferometry observations with an array including the Crimean Astrophysical Observatory 22-m radio telescope. All these sources display fairly strong variability during the time interval considered, encompassing fluxes from ~40 to ~2300 Jy. A flare reaching ~17 000 Jy was detected at a velocity of 42.8 km/s in G25.65+1.05 on September 7, 2017, which subsequently grew to 60 000 Jy at the end of September 2017. This suggests the presence of compact maser structures. The velocities covered by various spectral components range from 5 to 20 km/s. In three sources (G25.65+1.05,G25.825?0.178,G35.20?0.74), a general growth in the fluxes of all the spectral features is observed, which may indicate variations in the conditions for pumping by an external source, for example, variations in the infrared flux from a central source or the passage of a shock. Possible evidence for the presence of bipolar outflows or disk structures in G25.65+1.05 is discussed.  相似文献   

15.
We present observations of H2O maser emission from the complex region of active star formation Sgr B2 performed in 2005–2012. The observations were carried out with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory. Seven flares with flux densities higher than 1000 Jy were detected. The flares occurred in all three main sites of star formation in Sgr B2, N,M, and S. The highest peak flux densities were 3200 Jy (60.9 km/s), 2350 Jy (69.4 km/s), and 7300 Jy (69.3 km/s) in N, M, and S, respectively. This last flare was the strongest during our monitoring campaign from 1982 to 2012, both in S and in the entire Sgr B2 complex. Possible associations of the flares were determined. High-velocity, short-lived emission was detected at 124–128 km/s. Emission at 127 km/s with a flux density of 23 Jy is associated with region M. Emission at 80.6 and 84.6 km/s, at radial velocities higher than those observed previously, was detected in region S.  相似文献   

16.
The results of monitoring the H2O maser observed toward the region GH2O 092.67+03.07 (IRAS 21078+5211) located in the Giant Molecular Cloud Cygnus OB7 are presented. The observations were carried out with the 22-m radio telescope of the Pushchino Radio Astronomy Observatory in 2006–2017. Strong flares of the H2O maser emission with flux densities up to 19 800 Jy were detected. The flares exhibited both global (over the source) and local characters. All the flares were accompanied by strong variations in the H2O spectra within the corresponding radial-velocity ranges. Individual H2O components form both compact clusters and chains 1–2-AU long. Analysis of the variations of the fluxes, radial velocities, and line shapes of features during the flares showed that the medium may be strongly fragmented, with small-scale turbulent motions taking place in the H2Omaser region.  相似文献   

17.
Observations of the RRAT pulsars J0627+16, J0628+09, J1819?1458, J1826?1419, J1839?01, J1840?1419, J1846?0257, J1848?12, J1850+15, J1854+0306, J1919+06, J1913+1330, J1919+17, J1946+24, and J2033+00 observed earlier on the 64-m Parkes telescope (Australia) and the 300-m Arecibo radio telescope (Puerto Rico) at 1400 MHz were conducted at 111 MHz on the LSA radio telescope of the Pushchino Radio Astronomy observatory in 2010–2012. A characteristic feature of these pulsars is their sporadic radio emission during rare active epochs and the absence of radio emission during long time intervals. No appreciable flare activity of these pulsars was detected in the Pushchino observations. However, processing the observations using the Fast Folding Algorithm taking into account known information about the pulsar dispersion measures and periods shows that, even during quiescent intervals, the majority of the studied pulsars generate weak radio pulses with a period corresponding to that of the radio emission of the sporadic pulses observed at active epochs. The flux of this radio emission does not exceed 100 mJy at the pulse peak, even at the low frequency of 111 MHz. This considerably hinders detection of the radio emission of RRAT pulsars at high frequencies, since the radio fluxes of RRAT pulsars decreases with increasing frequency.  相似文献   

18.
Results of the observations of the blazar J1159+2914 (S1156+295) in 2010–2013 are reported. The observations were carried out on the RATAN-600 radio telescope (Special Astrophysical Observatory, Russian Academy of Sciences) at 4.85, 7.7, 11.1, and 21.7 GHz and the 32-m Zelenchuk and Badary radio telescopes of the Quasar-KVO Complex (Institute of Applied Astronomy, Russian Academy of Sciences) at 4.85 and 8.57 GHz. A flare peaked in August 2010, after which the flux density decreased monotonically at all studied frequencies. Variability on a timescale of 7 days was detected at 7.7 and 11.1 GHz near the flare maximum. The delay in the maximum at 7.7 GHz relative to the maximum at 11.1 GHz was 1.5 d, implying a Lorentz factor γ = 55 and angle of the jet to the line of sight θ ≈ 2° since mid-2011. Searches for intraday variability (IDV) were undertaken by the 32-m telescopes, mostly since mid-2011. Intraday variability was confidently detected only at the Badary station on November 10–11, 2012 at 4.85 GHz: the IDV timescale was τ acf = 6 h, the modulation index was m = 1.4%, and the flux density of the variable component was S var = 126 mJy.  相似文献   

19.
Results of a study of the variability of the blazar J0721+7120 carried out on the RATAN-600 based on daily observations from March 5, 2010 to April 30, 2010 at five frequencies from 2.3 to 21.7 GHz are reported. In the same time interval, 13 observing sessions at 37 GHz were carried out on the 14-m radio telescope of the Mets?hovi Radio Astronomy Observatory of the Aalto University School of Technology (Finland). From March 19, 2010 to October 20, 2010, 16 daily sessions at 6.2 cm and five sessions at 3.5 cm were conducted on the 32-m radio telescope of the Zelenchukskaya Observatory (Quasar-KVO complex of the Institute of Applied Astronomy, Russian Academy of Sciences). A powerful flare was detected during the observations, with a time scale of approximately 20 days, derived from an analysis of the light curves and the structure and autocorrelation functions. The flare spectrum has been determined. In five sessions on the 32-m Zelenchukskaya telescope at 6.2 cm, intraday variability with time scales 8-16 h was detected; in four sessions, trends with time scales longer than a day were observed. In three sessions at 3.5 cm, intraday variability with a time scale of approximately 5 h was detected.  相似文献   

20.
Results of monitoring of the H2O maser observed toward the infrared source IRAS 21078+5211 in the giant molecular cloud Cygnus OB7 are presented. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from April 1992 to March 2006. Five cycles of maser activity at various levels were observed. In the periods of highest activity, the spectrum of the H2O maser emission extended from ?43 to 12 km/s. During strong flares, the flux densities in some emission features reached nearly 600 Jy. The protostar has a small peculiar velocity with respect to the CO molecular cloud (~2 km/s). Based on the character of the radial-velocity variations and the tendency for the linewidth to increase with the flux, it is concluded that the medium is strongly fragmented and that there is a small-scale turbulent outflow of ga in the H2O maser region, which may impede the formation of an HII region. The asymmetric distribution of the maser components in V LSR, the difference in the average linewidths of the central and lateral clusters of components, and the fairly high radial velocities relative to the molecular cloud (especially during periods of the highest maser activity) suggest that the maser spots belong to different clusters and different structures of the source: a disk and bipolar outflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号