首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The relationship between hydrological conditions and riparian helophyte vegetation was studied in two freshwater estuaries that differed in tidal regulation in order to assess the effects of large-scale hydrological regulation on the fringe vegetation. Vegetation and environmental variables were sampled for 206 sites in the Rhine-Meuse estuary (146 sites) and the IJsselmeer region (60 sites) in the Netherlands. These samples were classified into 10 vegetation types, all of which were dominated by tall helophytes. The most common vegetation types were dominated byPhragmites australis andTypha angustifolia, which formed both monospecific stands and mixtures. Tall Cyperaceae dominated three vegetation types (dominated individually bySchoenoplectus lacustris, Bolboschoenus maritimus, andSchoenoplectus tabernaemontani).Acorus calamus. Principal components analysis of the species composition of vegetation fringing open-water areas and associated environmental data revealed complex gradients incorporating differences in water depth, water-level fluctuation, were exposure, and sedimentation and/or erosion. The composition of the helophyte belts varied among the areas as the result of the differing times at which regulation occurred. Based on historical data, hydrological regulation of the estuaries has resulted in deterioration of intertidalSchoenoplectus andBolboschoenus stands, due to erosion and predation.P. australis stands have been invaded by terrestrial plant species or have been replaced byT. angustifolia. A scheme is presented of helophyte vegetation development under the influence of changes in the hydrological regime.  相似文献   

4.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

5.
Tidal freshwater wetlands are complex, species-rich ecosystems located at the interface between tidal estuaries and nontidal rivers. This study conducted on the Patuxent River estuary in Maryland was designed to assess vegetation dynamics over several decades to determine if there were directional changes in the dominant communities. Aerial photographs (1970, 1989, and 2007) documented broad-scale spatial changes in major plant communities. The coverage of areas dominated by Nuphar lutea and Phragmites australis expanded; mixed vegetation and scrub–shrub habitats were essentially unchanged; and Typha and Zizania aquatica communities fluctuated in coverage. Data collected between 1988 and 2010 from permanent plots and transects were used to examine fine-scale changes. Shifts in the importance of some species through time were observed, but there were no directional changes in community species composition. The lack of directional change as measured at a fine scale is characteristic of tidal freshwater wetlands in which variations in the abundance of individual species, especially annuals, are responsible for most short-term change in species composition. Changes in the composition of plant communities are interpreted as responses to variations in vertical accretion, stability of habitat types, invasive plant species, and herbivores. In the future, vegetation changes are likely to occur as a result of the intrusion of brackish water and increased flooding associated with global climate change and sea level rise. This long-term study establishes a baseline from which potential future changes to tidal freshwater wetlands can be better understood.  相似文献   

6.
The vertical distribution of infauna was quantified in eight strata from 0–35 cm in sand and mud sediments of a lower mesohaline subestuary of Chesapeake Bay. Large numbers of small polychaetes, amphipods, and clams occurred in the upper 5 cm of both sediment types, whereas large clams (Macoma balthica in mud andMya arenaria in sand) extended down to 30 cm and comprised most of the biomass in their respective sediment types. There was extensive overlap of the species inhabiting both sediment types. Vertical stratification within and among species apparently reflected constraints on burrowing depth related to body size rather than resource partitioning among competitors. The maximal sediment penetration of 35 cm, which was exhibited byHeteromastus filiformis, was considerably less than the maximal penetration for deep burrowing species in some marine infaunal communities. Several species which burrowed deeper than 5 cm exhibited significant temporal shifts in their vertical distribution.  相似文献   

7.
Structure and temporal variability in nekton communities were examined for four small brackish creeks along a major tributary (Adams Creek) of the Neuse River estuary, North Carolina during May–September 1994. An inverse salinity gradient was observed along Adams Creek with highest values in the most upstream creek due to a manmade channel connecting the creek to the Newport River estuary. The nekton communities of the four tributaries were similar with some differences in relative abundance of individual species and timing of recruitment and migrations. Bay anchovies (67%), spot (19%), and brown shrimp (6%) were the most abundant species, with the top ten species accounting for 98% of the total catch. The transport of high salinity water (and presumably nekton larvae) into the headwaters of Adams Creek via the canal appeared to have a strong influence on the nekton community; the nekton community present in the Adams Creek system resembled communities in mesohaline waters closer to the outer banks rather than those in an adjacent creek along the Neuse River estuary (South River estuary). Cluster analysis indicated nekton in the creeks could be grouped into early and late season assemblages. Canonical correspondence analysis suggested that neither the creeks nor the dominant species were strongly related to any measured environmental variables indicating habitat suitability was similar regardless of the differences in watershed activities among the four creeks.  相似文献   

8.
Distribution, abundance, and community structure were studied over a 30 month period in the planktonic copepod community of the estuaries near Beaufort, North Carolina. Many of the copepod species showed a demersal distribution during the day and entered the surface waters at night. Several species were largely confined to vegetated littoral areas during the day. The copepod community showed consistent trends of seasonal abundance and succession of dominant species which differed greatly from those found by previous workers, whose methods were inadequate to sample quantitatively the small, demersal copepods which dominated the community. Copepod abundances were higher than found in previous studies and were correlated with water temperature. Species composition changed from a winter community dominated byCentropages spp., to a spring community dominated byAcartia tonsa, to a summer community jointly dominated byParacalanus crassirostris andOithona spp. Copepods were much more important grazers in these estuaries than previous studies had concluded.  相似文献   

9.
The loss of submerged aquatic vegetation (SAV) from the Patuxent estuary during the latter part of the 20th century was explored using diverse data sets that included historic SAV coverage and distribution data, SAV ground truth observations, water clarity and nutrient loading data, and epiphyte light attenuation measurements. Analysis of aerial photography from 1952 showed that SAV was abundant and widely distributed along the entire mesohaline region of the estuary; by the late 1960s rapid declines in SAV took place following large increases in nutrient loading to the estuary. An examination of water clarity and epiphyte data suggest that the processes that led to the loss of SAV varied in strength along the axis of the estuary. In the upper mesohaline region, Secchi depths were consistently less than established mesohaline SAV habitat requirements at 1-m water depth, suggesting that water clarity was responsible for SAV decline. In the lower mesohaline region, where water clarity was consistently above SAV requirements, high epiphyte fouling rates significantly reduced light available to SAV. Experimental results show that epiphyte fouling had the capacity to reduce available light to SAV blades from 30% to 7% of surface light within a week, and likely contributed to the local decline and near total loss of SAV during the late 1960s and early 1970s. The prognosis for near-term SAV recovery within the mesohaline portion of the estuary seems unlikely given existing water quality conditions.  相似文献   

10.
Aerial photographs and GIS analysis were used to map the distribution of tidal marsh vegetation along the salinity gradients of the estuaries of the Altamaha and Satilla Rivers in coastal Georgia. Vegetation maps were constructed from 1993 U.S. Geological Survey Digital Orthophoto Quarter Quads, 1∶77,000-scale color infrared photographs taken in 1974 and 1∶24,000-scale black and white photographs taken in 1953, Changes between years were identified using a GIS overlay analysis. Four vegetation classifications were identified and groundtruthed with field surveys: salt marsh (areas containing primarilySpartina alterniflora), brackish marsh (Spartina cynosuroides andS. alterniflora), Juncus (Juncus roemerianus), and fresh marsh (Zizania aquatica, Zizaniopsis miliacae, and others). There was no evidence for an upstream shift in marsh vegetation along the longitudinal axis of either estuary over the time frame of this analysis, which implies there has not been a long-term increase in salinity. Although the inland extent of each marsh zone was further upstream in the Satilla than the Altamaha, they corresponded to similar average high tide salinities in each estuary: areas classified as salt marsh occurred from the mouth up to where average high tide salinity in the water was approximately 15 psu;Juncus ranged from 21 to 1 psu; brackish marsh ranged from 15 to 1 psu; and fresh marsh was upstream of 1 psu. Approximately 63% of the 6,786 ha of tidal marsh vegetation mapped in the Altamaha and 75% of the 10,220 ha mapped in the Satilla remained the same in all 3 yr.Juncus was the dominant classification in the intermediate regions of both estuaries, and shifts between areas classified asJuncus and either brackish or salt marsh constituted the primary vegetation change between 1953 and 1993 (87% of the changes observed in the Altamaha and 95% of those in the Satilla). This analysis suggests that the broad distribution of tidal marsh vegetation along these two estuaries is driven by salinity, but that at the local scale these are dynamic systems with a larger number of factors affecting the frequently changing borders of vegetation patches.  相似文献   

11.
Spatial distribution patterns ofScirpus validus were studied in tidal marshes of the lower Savannah River. The hypothesis that changes in spatial pattern forS. validus would accompany differences in environmental parameters was tested by sampling densities and biomass along environmental gradients of salinity and elevation. Coefficients of dispersion were calculated forS. validus and used to compare spatial patterns among freshwater, midly oligohaline, strongly oligohaline, and mesohaline tidal marshes. Results indicated significantly greater clumping ofS. validus in mesohaline marsh than in freshwater marsh. Only the mildly oligohaline site supported a random population ofS. validus, while the strongly oligohaline marsh supported a uniform spatial distribution. Spatial pattern and relative importance ofS. validus, as well as composition of co-occurring species, changed significantly with changing salinity. The relations between changes in relative importance ofS. validus and differences in soil organic matter and elevation were also significant.  相似文献   

12.
Lake Pontchartrain is a large, shallow, low salinity estuary north of New Orleans, Louisiana. It is a water quality impaired system with restoration efforts in progress. One restoration goal is the reestablishment of historic submersed aquatic vegetation (SAV;Vallisneria americana Michx. andRuppia maritima L.), which has been in a state of decline since first studied in 1953. Annual SAV surveys and monthly water quality monitoring were conducted at four to five sites from 1996 through 2003 to evaluate trends and determine the causes of SAV change. We found a rapid increase in the distribution and abundance ofR. maritima in 1999 that persisted through 2002. An El Niño Southern Oscillation shift occurred between 1997 and 2001, which produced a drought in southern Louisiana as an ancillary effect of La Niña. This study was conducted to investigate causal links between the El Niño to La Niña climate phase shift and SAV change. We found that salinity and water clarity increased during La Niña. Increased water clarity produced a rapid increase in the euryhaline speciesR. maritima in deeper water and at historic sites where SAV had not been found since 1953. As salinity increased, the freshwater speciesV. americana andMyriophyllum spicatum L. declined, andNajas guadalupensis (Spreng.) Magnus andPotamogeton perfoliatus L. disappeared. In 2003, after the La Niña phase, salinity and water clarity decreased,R. maritima decreased, and the freshwater species increased, butP. perfoliatus was still absent. We found that salinity controlled SAV species composition, and water clarity controlled SAV colonization depth (Zcol=2.3/Kd). Our study demonstrated that climatic shifts cause cyclic changes in Lake Pontchartrain SAV and that restoration could be accomplished by improving water clarity. Due to the sensitivity of SAV to environmental change, similar responses to short-term and long-term climate changes should occur in other estuarine systems.  相似文献   

13.
A model for the geomorphic and vegetation development of a river valley tidal marsh in southern New England (Connecticut) is based on both the species composition of roots and rhizomes and on the mineralogic sediments preserved in peat. The maximum depth of salt marsh peat is 3.8 m and in the deepest areas this can overlie up to 1.9 m of fresh to brackish water peat. Based on a radiocarbon date of 3670±140 yr before the present (B.P.) for basal peat at a depth of 4.0 m, vertical accretion rates have averaged ca. 1.1 mm yr?1. Salt marsh formation began in response to rising sea level 3800–4000 yr B.P., as brackish marshes, dominated by bulrush (Scirpus sp.), replaced freshwater wetlands along stream and river channels. Gradually salt marsh vegetation developed over submerging brackish marshes, adjacent uplands, and accreting tidal flats. By 3000 yr B.P. the lower estuary was tidal, with sufficient salinity for salt marsh to dominate most wetlands. Spikegrass (Distichlis spicata) was an important early colonizer in salt marsh formation and its role in marsh development has not been documented previously. Blackgrass (Juncus gerardi), currently a typical upper border species, appears in the peat record relatively recently, perhaps within the last few centuries. In contrast, reed (Phragmites australis) has been present for at least 3500 yr. The dominance of reed along the upper border today, however, appears to be a relatively recent phenomenon.  相似文献   

14.
Environmental characteristics were measured and recorded in the Skagit Marsh, a brackish intertidal marsh on Puget Sound, Washington. Four transects were placed perpendicular to a known gradient of increasing salinity which began with fresh water at the bank of one of the outlets of the Skagit River and reached a surface water salinity of 22‰ at a point alongshore 5 km north of the outlet. The environmental characteristics which were measured varied along gradients (soil texture, organic carbon in fines, soil column temperature, free soil water salinity) or had a patchy distribution (soil redox potential, soil macro-organic matter). Growth and production vary across the marsh. The maximum aboveground standing crop (1,742 g m?2 dry weight) was measured at a site with 0–4‰ free soil water salinity, dominated by the sedgeCarex lyngbyei. In more saline areas (8–12‰), the bulrushScirpus americanus was dominant and standing crop values dropped to a third of the maximum. Species performance varied in a complex manner as did the environment.C. lyngbyei had diminished growth and decreased standing crop in areas where salinity was higher.S. americanus was equally productive in low elevation, high salinity sites and in high elevation, low salinity sites. An increase in shoot density for dominant species occurred in saline areas as individual shoot weights and leaf areas decreased. Because species responded differently, environmental variation was magnified in the population and community responses of the marsh vegetation.  相似文献   

15.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

16.
A 16-month data set of phytoplankton assemblages and environmental parameters were studied in the lower James, York (-Pamunkey), and Rappahannock rivers using several exploratory statistical approaches. Based on species composition and river station relationships, three site groups were established and subsequently identified as predominantly tidal fresh, oligo-mesohaline, and mesohaline sites. Phytoplankton assemblages within these rivers were influenced and subsequently augmented by the onset of the spring freshet which was different in 1986 and 1987. Five temporal assemblages of phytoplankters were also identified and designated into seasonal groupings of spring 1986, summer-fall, summer-winter, fall-winter, and winter-spring 1987. Discriminant analysis (MANOVA) evaluations were made for water quality parameters to site and seasonal phytoplankton assemblages and these relationships are discussed. Moving downstream along an oligohaline-mesohaline gradient, the nitrogen and phosphorus levels decreased and the phytoplankton composition was more similar at several corresponding site locations in the different rivers than at stations relatively close to each other in the same river. Within these data sets approximately 58% of the explained variance was associated with site (spatial) effects, 30% with temporal effects, and 12% with site-temporal interactions. A transition from dominant bloom-producing freshwater diatoms to estuarine species occurs from the tidally influenced freshwater zone downstream. This change may be rapid as the decline ofSkeletonema potamos, or more gradual, as withCyclotella striata andCyclotella meneghiania. These are replaced downstream bySkeletonema costatum, Cyclotella caspia, andLeptocylindrus minimus as dominant species.  相似文献   

17.
Benthic macroinvertebrate abundance, taxonomic composition, and surface flooding dynamics were compared among high and low elevation stands of narrow-leaved cattail (Typha angustifolia) and invasive common reed (Phragmites australis) at Iona Island Marsh, an oligohaline wetland, and Piermont Marsh, a mesohaline wetland, within the Hudson River National Estuarine Research Reserve during 1999 and 2000. Overall, the benthic macroinvertebrate community at both sites was similar in composition and abundance to those documented from other low-salinity systems. Macroinvertebrate taxa richness was lowest in mesohaline common reed, but similar among common reed and cattail habitats in oligohaline wetlands. Total macroinvertebrate densities were greater at high-elevation compared to low-elevation reed stands at the mesohaline site during summer 1999 and spring 2000. Total macroinvertebrate densities were similar among both oligohaline vegetation types during all seasons, except for spring 2000, when lower densities were observed in low-elevation common reed. A weak positive relationship between macroinvertebrate density and depth of flooding suggests that surface hydrology may be influencing the observed patterns of macroinvertebrate density among the vegetation stands. These results suggest that benthic macroinvertebrate abundance and diversity may not necessarily be impaired in low-salinity wetlands experiencing invasion by common reed unless the change in vegetation is accompanied by a measurable alteration to physical conditions on the marsh surface (i.e., elevation and flooding dynamics).  相似文献   

18.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

19.
Vegetation maps of the lower Laguna Madre prepared from surveys conducted in 1965–1967, 1974–1976, and 1988 document a >330 km2 decrease in cover byHalodule wrightii, an increase of almost 190 km2 in other seagrass species, and an increase of 140 km2 in bare bottom. Loss in seagrass cover is confined to deeper parts of the laguna; turbidity caused by maintenance dredging is the suspected cause. The species shifts are consistent with observed reductions in salinity maxima. Although the hydrological alterations and climatic shift responsible for moderating the salinity regime occurred between 1948 and 1965, the biological changes continue. Establishment of patches away from source meadows appears to be the process for displacing species that limits their rate of expansion into suitable habitat in this elongate embayment.  相似文献   

20.
In Louisiana, plant production rates and associated decomposition rates may be important in offsetting high rates of land loss and subsidence in organic marsh soils. Decomposition ofSpartina patens shoot and leaf material was studied by using litter bags in mesohaline marshes in the Barataria and Terrebonne basins of coastal Louisiana.Spartina patens decomposed very slowly with an average decay constant of 0.0007, and approximately 50% of the material remained after 2 years in the field. Material at the Barataria site decomposed faster than did Terrebonne material with trend differences apparent during the first 150 days. This difference might be explained by the higher content of phosphorus in the Barataria material or a flooding period experienced by the Barataria bags during their first 10 days of deployment. Nitrogen and carbon content of the plant material studied did not differ between the two basins. We detected no consistent significant differences in decomposition above, at, or below sediment/water level. BecauseS. patens is the dominant plant in these marshes, and because it is so slow to decompose, we believe thatS. patens shoots are an important addition to vertical accretion and, therefore, marsh elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号