首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction of two dams in 1958 and 1982 reduced freshwater inflow events to Rincon Bayou, part of the Nueces Delta near Corpus Christi, Texas, USA. Inflow reduction led to a reverse estuary, where low-salinity water flooded the delta on incoming tides and higher salinities were found near the Nueces River. Hypersaline conditions caused by high evaporation rates and low water levels were common during summer in the upper reaches. In October 1995, an overflow diversion channel was created by lowering the bank of the Nueces River to restore inflow events into Rincon Bayou, which is the main stem creek that runs through the center of the Delta. Hypersaline conditions occurred four times from mid-1994 to mid-1997 and only once after mid-1997. Lower, rather than higher, salinity conditions were found after August 1997 in the upper reaches. Benthic faunal recovery was monitored by changes in macrofauna and meiofauna communities. Macrofauna responded to inflow events with increased abundances, biomass, and diversity but decreased during hypersaline conditions. Meiofauna abundance also increased with increasing inflow. Benthic characteristics were different in Rincon Bayou than in a reference site, upstream from introduced inflow. As inflow events have increased due to the diversion, the opportunities for positive responses to increased flow have increased. Although the oveflow channel was filled in at the end of the demonstration project in fall 2000, the City of Corpus Christi reopened the channel in fall 2001 because the ecological benefits were credited toward the state-mandated minimum flow requirement for the Nueces Estuary.  相似文献   

2.
Construction of two dams in 1958 and 1982 decreased freshwater inflow to the Nueces River and Nueces Delta marsh, which has become a reverse estuary where salinity increases upstream rather than downstream as would occur in a normal estuary. In 1995, an overflow channel was dug to breach the banks of the Nueces River to restore inundation of the marsh via Rincon Bayou, which is the main stem channel of the delta. Previous studies demonstrated a restoration of a normal salinity gradient and positive affects on benthos in the upper reaches of Rincon Bayou. The present study was performed to determine how far downstream the overflow channel had beneficial effects. A transect of eight stations was established and sampled quarterly between October 1998 and October 1999. Benthic characteristics were measured to assess ecological change. There were 12 precipitation and freshwater inflow events between the month preceding and ending sampling. The largest were in fall and restored normal salinity patterns. The macrobenthic community was different in three zones. The upper four stations (<6.4 km from the overflow channel) were highly variable in water inundation and salinity. The broad salinity range caused the lowest diversity and allowed short-lived pioneer speciesStreblospio benedicti, Laeonereis culveri, and Chirominid larvae to dominate. Biomass blooms occurred during fall inflow events in the upper reaches. The central stations (11.4 to 14.3 km from the overflow channel) were brackish, had more narrow salinity ranges, and were more diverse.Mulinia lateralis, Mediomastus ambiseta, Cerapus tubularis, andAmpelisca abdita were dominant species. The third zone, the lower portion of Nueces Bay (27 km from the overflow channel), was distinct from other stations in the transect, because it had the greatest marine influence. It is in a later successional stage, with a more diverse community of larger organisms, e.g.,Polydora caulleryi, Tharyx setigera, andMysella planulata, which were dominant species and contributed to the larger biomass there. Overall, the overflow channel restored normal salinity patterns in the upper reaches (<14 km) of Rincon Bayou and freshwater pulses (>106 m3) in fall increased benthic productivity indicating ecological functions were restored as well. This restoration however, only occurs intermittently for short time periods because the freshwater events are isolated and inflow volumes during the current study were too small to affect the lower Rincon Bayou or Nueces Bay.  相似文献   

3.
The coastal marshlands of the Nueces estuary, Texas depend upon periodic freshwater inundation to support current community structure and promote further establishment and expansion of emergent halophytes. Decades of watershed modifications have dramatically decreased freshwater discharge into the upper estuary resulting in hypersaline and dry conditions. In an attempt to partially restore inflow, the U.S. Bureau of Reclamation excavated two overflow channels re-connecting the Nueces River to the marshlands. Freshwater-mediated (precipitation and inflow) changes in tidal creek and porewater salinity and emergent marsh vegetation were examined over a 5-yr period at three stations in the upper Nueces Marsh with the aid of a Geographical Information System (GIS). Two stations were potentially subjected to freshwater inflow through the channels, while one station experienced only precipitation. Decreased tidal creek and porewater salinity were significantly correlated with increased freshwater at all stations (R2=0.37 to 0.56), although porewater salinities remained hypersaline. GIS analyses indicated the most considerable vegetation change following freshwater inundation was increased cover of the annual succulentSalicornia bigelovii. Fall inundation allowed seed germination and rapid expansion of this species into previously bare areas during the subsequent winter and following spring. The station affected by both inflow and precipitation exhibited greaterS. bigelovii cover than the station affected solely by precipitation in both spring 1999 (58. 7% compared to 27.9%) and 2000 (48.6% compared to 1.9%). Percent cover of the perennialBatis maritima temporarily increased after periods of consistent rainfall. The response was short term, and cover quickly returned to pre-inundation conditions within 3 mo. Prolonged inundation led to longterm (>2yr) decreases in percent cover ofB. maritima. Our results suggest that the timing and quantity of freshwater inundation strongly dictate halophyte response to precipitation and inflow. Brief periods of freshwater inundation that occur at specific times of year alleviate stress and promote seed germination and growth, but extended soil saturation can act as a disturbance that has a negative impact on species adapted to hypersaline conditions.  相似文献   

4.
Two estuaries with very different inflow characteristics were compared to test the hypothesis that benthic standing crops are enhanced by freshwater inflow. Assuming predation pressure is similar in both estuaries, this would imply that freshwater inflow enhances secondary production. The Guadalupe Estuary had 79 times more freshwater inflow than the Nueces Estuary, and a third of the salinity. The Guadalupe had higher macrofaunal densities and biomass than the Nueces, and both parameters increased with decreasing salinity within the Guadalupe Estuary. Macrofauna density increased with increasing salinity in the Nueces Estuary, due to invasion by marine species. However, meiofauna population size responds differently than macrofauna. Meiofaunal densities were higher in the low-inflow Nueces Estuary, and increased with increasing salinity in both estuaries. Macrofauna diversity increased with salinity, both within and between estuaries. The macrofauna response supports the hypothesis that increased freshwater inflow stimulates secondary production. A review of past benthic studies in these estuaries and the historical climatic patterns indicate that wet years with high inflow result in increased macrofaunal productivity. Since, macrofaunal diversity decreased with lower salinity both within and between the estuaries, the enhanced productivity is due to increases by freshwater and estuarine species that can tolerate low salinities. Increased macrofaunal densities are associated with decreasing meiofaunal densities. The latter result could be due to either increased macrofaunal competition with or predation on meiofauna, or a lack of low-salinity tolerance by meiofauna.  相似文献   

5.
Since 1991, the Caernarvon Freshwater Diversion has been reintroducing Mississippi River water into a previously hydrologically isolated estuary in an effort to restore wetlands. To determine the effect of freshwater inflow on estuarine nekton community structure, a Before?CAfter?CControl?CImpact study design was applied. As a result of the opening, salinities in the impact area decreased, and the nekton community structure in the estuary changed significantly. Species of economical or ecological importance either increased in biomass or exhibited no response to the opening of the diversion. Higher abundances of small fish were observed in the area receiving freshwater flow, which is an indication that the area serves as a refuge from large marine predators. Because a salinity gradient was established, as opposed to a uniform but lower salinity regime, aquatic habitat was available to nekton species from a wide spectrum of salinity tolerances.  相似文献   

6.
Carbon entering the food web originating from microalgal productivity may be as important to salt marsh consumers as carbon originating from vascular plant production. The objective of this study was to further our understanding of the role played by microalgae in salt marshes. We focused on microalgal productivity, community dynamics, and pelagic food web linkages. Across three consecutive springs (2001–2003), we sampled the upper Nueces Delta in southeast Texas, United States; a shallow, turbid system of ponds and elevated vegetated areas stressed by low freshwater inflow and salinities ranging from brackish (11) to hypersaline (300). Despite high turbidity and low external nutrient loadings, microalgal productivity was on the order of that reported for vascular plants. Primary productivity in surface waters ranged from 0 to 2.02 g C m−2 d−1 and was usually higher than primary productivity associated with the benthos, which ranged from 0 to 1.14 g C m−2 d−1. This was likely due to high amounts of wind-driven resuspended sediment limiting production at greater depths. Most of the water column microalgal biovolume seemed to originate from the benthos and was comprised mostly of pennate diatoms. But true phytoplankton taxa were also observed, which included cryptomonads, chlorophyhtes dinoflagellates, and cyanobacteria. Succession from r-selected to K-selected taxa with the progression of spring, a common phenomena in aquatic systems, was not observed. Codominance by both potentially edible and less edible taxa was found. This was likely due to decreased grazing pressure on r-selected taxa as salinity conditions became unfavorable for grazers. In addition to a decoupled food web, reduced primary and net productivity, community respiration, and microalgal and zooplankton population densities were all observed at extreme salinities. Our findings suggest that a more accurate paradigm of salt marsh functioning within the landscape must account for microalgal productivity as well as production by vascular plants. Because the value of microalgal productivity to higher trophic levels is taxa specific, the factors that govern microalgal community structure and dynamics must also be accounted for. In the case for the Nueces Delta, these factors included wind mixing and increasing salinities.  相似文献   

7.
In the Patía River delta, the best-developed delta on the western margin of South America, a major water diversion started in 1972. The diversion of the Patía flow to the Sanquianga River, the latter a small stream draining internal lakes from the Pacific lowlands, shifted the active delta plain from the south to the north and changed the northern estuarine system into an active delta plain. The Sanquianga Mangrove National Park, a mangrove reserve measuring 800 km2, lies in this former estuary, where major hydrologic and sedimentation changes are occurring. Overall, major environmental consequences of this discharge diversion in terms of geomorphic changes along distributary channels and ecological impacts on mangrove ecosystems are evidenced by: (1) distributary channel accretion by operating processes such as sedimentation, overbank flow, increasing width of levees, sedimentation in crevasses, interdistributary channel fill, and colonization of pioneer mangrove; (2) freshening conditions in the Sanquianga distributary channel, a hydrologic change that has shifted the upper estuarine region (salinity <1%) downstream; (3) downstream advance of freshwater vegetation, which is invading channel banks in the lower and mixing estuarine zones; (4) die-off of approximately 5200 ha of mangrove near the delta apex at Bocas de Satinga, where the highest sediment accumulation rates occur; and (5) recurrent periods of mangrove defoliation due to a worm plague. Further analyses indicate strong mangrove erosion along transgressive barrier islands on the former delta plain. Here tectonic-induced subsidence, relative sea-level rise, and sediment starving conditions due to the channel diversion, are the main causes of the observed retreating conditions of mangrove communities. Our data also indicate that the Patía River has the highest sediment load (27 × 106 t yr−1) and basin-wide sediment yield (1500 t km−2 yr−1) on the west coast of South America. Erosion rates from the Patía catchment have been more pronounced during the decades of 1970–1980 and 1990–2000, as a result of land degradation and deforestation. The high sediment and freshwater inputs into the mangrove ecosystem create additional stress (both at ongoing background levels and, occasionally, at dramatic levels), which may periodically push local environmental parameters beyond the thresholds for mangrove survival. The future environmental state of the Sanquianga Mangrove National Reserve deserves more scientific and governmental attention.  相似文献   

8.
黄河三角洲地下水咸化已成为区域最突出的生态环境问题之一。识别地下水补给及盐分来源是有效控制和改善地下水咸化问题的关键。本研究采集了研究区浅层地下水、地表水和海水等不同类型水样,利用离子比、Piper三线图、吉布斯图等方法对八大离子浓度、δD和δ18O 组成、Br和Sr 浓度等进行地下水补给研究与盐分来源辨析。结果表明:(1)黄河三角洲浅层地下水以总溶解性固体(TDS)为338 g/L的咸水为主,地下水水化学类型较为单一,主要为Cl-Na型。(2)三角洲区域地下水以大气降水补给为主,并且在补给过程中经历了不同程度的蒸发作用的影响,黄河现行流路区域地下水主要来源于河水侧渗补给,但浅层地下水含水层水平渗透性较差限制了黄河侧渗补给范围。(3)海洋是黄河三角洲浅层地下水盐分的主要来源,黄河现行流路区域及近岸地下水盐分来源于海水混合,三角洲北部刁口河等古河道区域地下水盐分主要来源于海相蒸发盐淋滤溶解。  相似文献   

9.
We examined the contrasting, effects of floods and droughts produced by large changes in local climatology on vegetation patterns in Nueces marsh, a semi-arid subtropical salt marsh in south Texas from 1995 to 2005. Climate variations during the study included an initial 4-yr period of moderate conditions, followed by a 2-yr interval of drought, and a recent 4-yr wet period that included large-scale floods. Variation in freshwater inflow, rainfall, and potential evapotranspiration were used in conjunction with field measurements of salinity, inorganic nitrogen, and vegetation structure collected at sites located at varying distances from Nueces Bay. Tidal creek salinities varied with Nueces Bay salinity, with strength of effect inversely related to distance from the bay. Mean (±standard deviation) pore water salinities ranged from 59±54‰ at two high, marsh stations farthest from the bay (10.1 km distant) to 30±21‰ in soil at a low marsh site closest to the bay (0.5 km distant). Mean pore water ammonium was also higher at stations most distant from the bay; nitrate + nitrite did not exhibit a high marsh to low marsh gradient. Nueces Bay salinity decreased substantially when the 10-d cumulative mean daily Nueces River flows exceeded 10 m3 s−1. During periods of low and moderate flood frequency (flows mostly below 10 m3 s−1), vegetation assemblages were dominated by stress-tolerant clonal plants. A catastrophic flood, which immersed vegetation for several weeks between July and September 2002, resulted in extensive plant mortality, but within months, unvegetated areas were rapidly colonized by the obligate annualSalicornia bigelovii. With the end of major flooding by late 2004, plant community structure began a return to pre-drought assemblages at high and middle marsh stations by summer 2005. At the low marsh station, new conditions favored clonal dominants (Spartina alterniflora andBorrichia frutescens), with the latter replacingSalicornia virginica as the dominant species. Our results support the theory that the importance of competition and abiotic stress in determining community composition are inversely related.  相似文献   

10.
Examination of small-scale spatial variation in essential to understanding the relationships between environmental factors and benthic community structure in estuaries. A sampling experiment was performed in October 1993 to measure infauna association with sediment composition and salinity gradients in Nueces Bay, Texas, USA. The bay was partitioned into four salinity zones and three sediment types. Higher densities of macrofaua, were found in sediments with greater sand content and in areas with higher salinity. High diversity was also associated with high homogeneous salinity (31–33‰) and greater sand content. Macrofauna biomass and diversity were positively correlated with bottom salinity, porewater salinity, and bottom dissolved inorganic nitrogen (DIN). Furthermore, species dominance shifted along the estuarine gradient.Streblospio benedicti dominated at lower salinity, but,Mediomatsus ambiseta andMulinia lateralis were the dominant species at higher salinity. Statistical analyses revealed significant correlations for sediment characteristics (i.e., increased fine sediments, water content, and total organic carbon) with decreased total abundance and diversity. Increased salinity and DIN were correlated with increased total biomass, diversity, and macrofauma community structure. These physico-chemical variables are regulated by freshwater inflow, so inflow is an important factor influencing macrofauna community structure by indirectly influencing the physico-chemical environment.  相似文献   

11.
Long-term measurements of CO2 exchange between coastal wetlands and the atmosphere are necessary to improve our understanding of the role these ecosystems play in the global carbon cycle, and the response of these systems to environmental change. We conducted research to adapt and evaluate tower-based conditional sampling as a method for measuring net CO2 exchange (NCE) at the ecosystem scale on a continuous basis. With conditional sampling, NCE is determined from the product of the standard deviation of vertical wind velocity, the difference in CO2 concentration between updrafts and downdrafts in the constant flux portion of the boundary layer above the surface, and an empirical coefficient. We constructed a system that used a sonic anemometer to measure vertical wind velocity (w) and control a high-speed three-way valve that diverted air from updrafts and downdrafts into separate sample lines, depending on the direction ofw. an infrared gas analyzer was used to measure the concentration difference. The conditional sampling system was installed and tested in a marsh in the Nueces River Delta near Corpus Christi, Texas, as part of a long-term study of effects of freshwater inflow on CO2 flux. System accuracy was evaluated by comparing conditional sampling measurements of water vapor flux with independent estimates obtained with the Bowen ratio method. Average daily flux estimates for the two methods agreed to within 13%. Measurements showed that freshwater inflow due to flooding of the Nueces River increased NCE by increasing CO2 assimilation and decreasing CO2 efflux. Over a 65-d period, daily NCE varied from a maximum gain of 0.16 mol CO2 m−2 d−1 during flooding to a maximum loss of −0.14 mol CO2 m−2 d−1 when the marsh dried. Our study showed that conditional sampling was well suited for quantifying CO2 exchange in coastal wetlands on a diel, daily, and seasonal basis.  相似文献   

12.
Samples were collected at 71 sites in the Yellow River Delta Natural Reserve in December 2010 to represent soil conditions before and after the Yellow River (YR) diversion. The As, Cd, Cu, Pb, Zn, and Ni concentrations were measured to determine metal contamination levels. Results suggest that Cd concentrations were significantly higher after the YR diversion than before. The As, Cd, Cr, Cu, Ni, Pb, and Zn soil contamination indices did not exceed contamination levels, although the heavy metal content increased after the YR diversion. The mean concentrations of these heavy metals were lower than the Class I criteria. Correlation analysis shows significant correlations between As and Cr, Cu, Ni, Pb, and Zn concentrations both before and after the YR diversion. However, no significant correlations were observed between heavy metal concentration and pH before the diversion, and no heavy metal concentration was correlated with salinity. The principal component analysis indicates that these trace elements, including As, were closely correlated with each other and therefore likely originated from shared pollution sources before the diversion. These results are useful for assessing the heavy metal contamination and proposing feasible suggestions to improve soil quality.  相似文献   

13.
《Geochimica et cosmochimica acta》1999,63(19-20):3467-3475
Dissolved and particulate phosphorus, ammonia, and nitrate concentrations were measured in the Dead Sea water column (330 m depth, salinity ca. 340 g/L), in the Lower Jordan River and in springs along its western coast. Dissolved phosphate in the water column is fairly homogeneous, at about 35 μg P/L. Particulate P shows larger variability, 30–50 μg/L. The main inputs of dissolved phosphate into the lake are diffusion from bottom sediments (58%) and the Jordan River inflow (41%). Input from springs is negligible (1%). Biological uptake is a minor removal pathway because in the present Dead Sea, primary production takes place only when major floods occur and dilute the upper layer, about once in 10 years. When this happens, only about 200 ton P, out of a whole-lake reservoir of ca. 5000 ton P, are removed from the biologically active upper layer of about 7 m. Chemical removal pathways, not yet investigated, such as coprecipitation with authigenic aragonite, could be of importance. The average ammonia concentration in the water column has gradually increased from 5.9 mg/L in 1960 to 8.9 mg/L, in 1991. Diffusion from the bottom sediments is a major source of ammonia to the Dead Sea. The annual input from freshwater inflows has been of lesser importance in the 1960s and 1970s. A pollution-derived increase in the ammonia concentration of the Jordan River in the 1980s may partially explain the concomitant rise in the ammonia load of the lake. It is also suggested that following the 1979 overturn, and the yearly turnovers of the 1980s, ammonia might have been produced within the oxygenated water column by mineralization. Nitrate concentration was very low, 20 μg N/L, in the 1960s and increased to 0.2 to 0.5 mg/L in 1981. This increase is shown to be due to human pollution of the Jordan River. We conclude that nutrient concentration in the Dead Sea water column is controlled by physical and chemical factors, whereas biological effects are minimal.  相似文献   

14.
The dominant members of the freshwater zooplankton in the Sacramento-San Joaquin delta were those typical of temperate zone rivers—Bosmina andCyclops among the crustaceans andKeratella, Polyarthra, Trichocerca andSynchaeta among the rotifers. The estuarine or brackish component of the plankton was represented by the copepodEurytemora affinis and the rotiferSynchaeta bicornis. Abundace of freshwater zooplankton was highest in the San Joaquin River near Stockton, the region with the highest chlorophylla concentrations and highest temperatures. This was also the region least affected by water project operations, which alter the normal river flow patterns and bring large volumes of zooplankton-deficient Sacramento River water into the San Joaquin River and south delta chanels. Over a seven-year period, abundance of most zooplankton genera was positively correlated with chlorophylla concentrations and temperature but not with net flow velocity. OnlyBosmina had a significant and negative correlation with abundance of a predacious shrimp,Neomysis mercedis. Extreme salinity intrusion in 1977 reduced freshwater zooplankton abundance throughout most of the delta to seven-year lows. All zooplankton groups showed a long-term abundance decline from 1972 to 1978. In the cases of rotifers and copepods, this deciline was significantly correlated with a decline in chlorophylla.  相似文献   

15.
A three-dimensional, time-dependent hydrodynamic and suspended sediment transport model was performed and applied to the Danshuei River estuarine system and adjacent coastal sea in northern Taiwan. The model was validated with observed time-series salinity in 2001, and with salinity and suspended sediment distributions in 2002. The predicted results quantitatively agreed with the measured data. A local turbidity maximum was found in the bottom water of the Kuan-Du station. The validated model then was conducted with no salinity gradient, no sediment supply from the sediment bed, wind stress, and different freshwater discharges from upstream boundaries to comprehend the influences on suspended sediment dynamics in the Danshuei River estuarine system. The results reveal that concentrations of the turbidity maximum simulated without salinity gradient are higher than those of the turbidity maximum simulated with salinity gradient at the Kuan-Du station. Without bottom resuspension process, the estuarine turbidity maximum zone at the Kuan-Du station vanishes. This suggests that bottom sediment resuspension is a very important sediment source to the formation of estuarine turbidity maximum. The wind stress with northeast and southwest directions may contribute to decrease the suspended sediment concentration. When the freshwater discharges increase at the upstream boundaries, the limits of salt intrusion pushes downriver toward river mouth. Suspended sediment concentrations increase at the upriver reaches in the Danshuei River to Tahan Stream, while decrease at Kuan-Du station.  相似文献   

16.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

17.
Historic changes in water-use management in the Florida Everglades have caused the quantity of freshwater inflow to Florida Bay to decline by approximately 60% while altering its timing and spatial distribution. Two consequences have been (1) increased salinity throughout the bay, including occurrences of hypersalinity, coupled with a decrease in salinity variability, and (2) change in benthic habitat structure. Restoration goals have been proposed to return the salinity climates (salinity and its variability) of Florida Bay to more estuarine conditions through changes in upstream water management, thereby returning seagrass species cover to a more historic state. To assess the potential for meeting those goals, we used two modeling approaches and long-term monitoring data. First, we applied the hydrological mass balance model FATHOM to predict salinity climate changes in sub-basins throughout the bay in response to a broad range of freshwater inflow from the Everglades. Second, because seagrass species exhibit different sensitivities to salinity climates, we used the FATHOM-modeled salinity climates as input to a statistical discriminant function model that associates eight seagrass community types with water quality variables including salinity, salinity variability, total organic carbon, total phosphorus, nitrate, and ammonium, as well as sediment depth and light reaching the benthos. Salinity climates in the western sub-basins bordering the Gulf of Mexico were insensitive to even the largest (5-fold) modeled increases in freshwater inflow. However, the north, northeastern, and eastern sub-basins were highly sensitive to freshwater inflow and responded to comparatively small increases with decreased salinity and increased salinity variability. The discriminant function model predicted increased occurrences of Halodule wrightii communities and decreased occurrences of Thalassia testudinum communities in response to the more estuarine salinity climates. The shift in community composition represents a return to the historically observed state and suggests that restoration goals for Florida Bay can be achieved through restoration of freshwater inflow from the Everglades.  相似文献   

18.
Freshwater fraction and tidal prism models are simple methods for estimating the turnover time of estuarine water. The freshwater fraction method prominently features flushing by freshwater inflow and has sometimes been criticized because it appears not to include flushing by seawater, but this is accounted for implicitly because the average estuary salinity used in the calculation reflects all the processes that bring seawater into the estuary, including gravitational circulation and tidal processes. The model relies on measurable salinity differences among water masses and so must be used for estuaries with substantial freshwater inflow. Tidal prism models are based on flushing by flood tide inflow and ignore seawater inflow due to gravitational circulation. These models should only be applied to estuaries with weak or nonexistent gravitational circulation, which are generally those with little freshwater inflow. Using a framework that is less ambioguous and more directly applicable to the estimation of turnover times than those used previously, this paper critically examines the application of tidal prism models in well-mixed estuaries with complete tidal exchange, partial ebb return, or incomplete flood mixing and in partially mixed estuaries. Problems with self-consistency in earlier versions of these models also apply to the budgeting procedure used by the LOICZ (Land-Ocean Interactions in the Coastal Zone) program. Although freshwater fraction and tidal prism models are different approaches to estimating turnover times in systems with very different characteristics, consistent derivation shows that these models have much in common with each other and that they yield equivalent values that can be used to make comparisons across systems.  相似文献   

19.
Influences of tides, freshwater discharge, and winds on water properties in the St. Jones River estuary (USA), a Delaware National Estuarine Research Reserve, were investigated using multiyear records of sea level, salinity, and turbidity, supplemented by a current profiler time series in 2007. Results demonstrate that instantaneous properties fluctuate with semidiurnal tides and resonant overtides, whereas tidal mean variations are forced by seasonal freshwater inflow and offshore winds. Mean sea level and salinity are highest in summer and vary with seasonal water temperature and rainfall, whereas sea level variability and turbidity are highest in winter on account of storm effects. Salinity and discharge modeling suggest that much (43–65%) of the freshwater resident in the estuary is derived from non-point sources below the head of tide. This diffuse freshwater inflow produces a seaward surface slope and weak mean current, which temporarily reverses under the influence of storm–wind setup within Delaware Bay.  相似文献   

20.
The Gamtoos is a shallow flood-tidal estuary located on the south coast of South Africa. Even though it has an extensive catchment area, dams limit runoff and mean freshwater inflow is estimated at less than 1 m3 s?1, and the flood tidal deltas constrict and at times even close the mouth. The results presented here derive from an intensive measurement program carried out over a 3-wk period at the end of 1992, immediately after good rains in the Gamtoos catchment region. Freshwater inflow increased to more than 10 m3 s?1, driving the salt wedge downstream and resulting in intense haloclines in the mid-estuary region. The program monitored the return to more average estuarine structures, and even though tidal exchange was restricted, marked differences occurred in stratification at neap and spring tides; tidal exchanges provided the dominant mixing forces. It is found that the shallower upper reaches of the estuary are flushed with relatively small increases in freshwater inflow, though a balance exists with the tidal exchanges through the constricted mouth. The variation in the position of the salt wedge and in the salinity stratification can have substantial implications for biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号