首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Visual interpretation ofIRS-LISS-II (1:50,000 Scale) FCC, band 2, 3 and 4 was carried out for the Industrial effluence assessment on soils (21900 ha) along the Bandi river course in Pali district of arid Rajasthan. Very severe (4378 ha), severe (3427 ha), moderate (5856 ha) and slight (1388 ha) categories of anthropogenic salt affected soils with the varied image characteristics in conjunction with ground truth Have been identified and delineated from satellite imagery. The morphological and physico-chemical characteristics revealed that very severe category soil has thick salt crust dominantly in light gray color at surface, manifestation of strong sub-angular to angular blocky structure, extra-ordinary hardness, high ECe, SAR and ESP but low pHs. Severe category soils have light brownish gray colour at surface, manifestation of strong angular to columnar structure, high Ece, pHs, SAR and ESP but slightly lower than very severe category.Moderate category soils have light brownish gray colour at surface, moderate to strong manifestation of prismatic structure, low ECe but high pHs, moderate to high SAR and ESP.Slight category soils have pale brown colour and hard crust at surface, moderate hardness with the tendency to form weak prismatic structure in subsoil, low ECe (<4dSm-) but moderate pHs. The cations and anaions in saturation extract was in the order of Na+>Ca++ > Mg++ > K+ and Cl- > SO4 -- > HCO3 -- > CO3 --, respectively and salinity/sodicity was Sodium-Chloride-Sulfate type. Dynamics of salt accumulation, available nutrient status and amelioration measures required for their reclamation and improvement has been discussed in this paper.  相似文献   

2.
In the present study an attempt has been made to interpret visually the computer transformed, FCC, PC1-PC2 and Δ method products, landsat imagery of different seasons and with different crop cover, of salt affected areas of part of Haryana. FCC and PC1-PC2 of moist hot climate (10 October, 1972) was found better for physiographic interpretation than other seasons and bands, Δ method (October. 1972) and FCC of hot-dry season were good only for interpreting salt affected areas whereas other landform features were suppressed. Not much additional information was gained by way of PC1-PC2 and Δ method transformation over FCC (bands 4, 5, 7). It was possible to delineate different classes of salt effected soils based on the areal extent of the hazard.  相似文献   

3.
A World Bank-aided project on sodic land reclamation in Uttar Pradesh is being executed by U.P. Bhumi Sudhar Nigam, Lucknow, and Remote Sensing Applications Centre, U.P., Lucknow has the responsibility of sodic land mapping for the execution of land reclamation programme at the cadastral level. Sodic lands are mainly concentrated in the Gangetic alluvial plains but the problem of sodicity is particularly acute in the canal-irrigated areas. A study of the distribution pattern of sodic lands in canal and noncanal command areas in a reclamation site (covering 60 villages out of which sodic lands were mapped in 51 villages) of Etah district in Uttar Pradesh, indicates that 18.39 per cent area of the canal command villages was barren sodic which was 13.41 per cent of the total geographical area of the site (15417 ha), however, 11.69 per cent area was recorded to be barren sodic in the non-canal command villages which was only 3.16 per cent of the geographical area of the site. The results of soil chemical analysis indicate that barren sodic lands of canal command area are saline-sodic with higher concentration of soluble salts (pH2 >8.5, EC2 >4 dSm−1), however, those of non-canal command area are sodic (pH2 >8.5, EC2 <4 dSm−1). The post-monsoon ground level in the canal-irrigated areas was in the critical and semicritical zone (< 3.0 mbgl) whereas it was well below the semi-critical zone in the non-canal command area, which indicates that the high ground water level is a major factor to higher the area under sodicity.  相似文献   

4.
Soil is an integral part of ecosystem nurturing the biological system. Sustainable management of soil resources based on the consideration of constraints is the key to check land degradation and maintain productivity of biological system. To meet the objective remote sensing and GIS technology has been employed for identification of soil constraints in resource potential Bhilwara district. IRS LISS-III FCC images were interpreted for soil constraints using physiography soil approach, verified through field checking and laboratory analysis. On IRS LISS-III FCC images the salt affected soils of Kotri and Taswaria appeared in bright white to light grey tone, smooth texture with white mottles. These were also verified during ground truth and soil analysis for salinity (EC 2.90–3.32 dS m−1) and sodicity (pH 9.50–9.86 and ESP 17.60–19.05). Similarly on the LISS III FCC, constraints due to water erosion near Bir, Sareri and Vijaypura soil series were apparent in light grey to whitish tone, intercepted by medium grey streaks indicating streams and exposed sub-soil. The constraints due to shallow depth associated with rock out crops and hilly areas of Balda and Delwara series appeared in greenish grey tone and coarse texture. There was close relationship between image characteristics, field observation and analytical data.  相似文献   

5.
Management of salt-affected soils is a challenging task in the input intensive rice-wheat cropping zone of the Indo-Gangetic plains (IGP). Timely detection of salt-affected areas and assessment of the degree of severity are vital in order to narrow down the potential gap in yield. Conventional laboratory techniques of saturation extract electrical conductivity (ECe) and sodium adsorption ration (SAR) for soil salinity assessment are time-consuming and labour intensive; the VNIR (visible-near infrared) reflectance spectroscopy technique provides ample information on salinity and its attributes in an efficient and cost-effective way. This study aims to develop robust soil reflectance spectral models for rapid assessment of soil salinity in the salt affected areas of the IGP region of Haryana using VNIR reflectance spectroscopy. The results indicated that the spectral region between 1390 and 2400 nm was highly sensitive to measure changes in salinity. The developed hyperspectral models explained more than 80 % variability in ECe, and other salinity related attributes (saturated extract Na+, Ca2+ + Mg2+, Cl? and SAR) in the validation datasets. With the increasing availability of data from hyperspectral sensors in near future, the study will be very useful in real time monitoring of soils in the spatio-temporal context; enabling the farmers of IGP area to deal with salt degradation more effectively and efficiently.  相似文献   

6.
Sagebrush ecosystems of the western US provide important habitat for several ungulate and vertebrate species. As a consequence of energy development, these ecosystems in Wyoming have been subjected to a variety of anthropogenic disturbances. Land managers require methodology that will allow them to consistently catalog sagebrush ecosystems and evaluate potential impact of proposed anthropogenic activities. This study addresses the utility of remotely sensed and ancillary geospatial data to estimate sagebrush cover using ordinal logistic regression. We demonstrate statistically significant prediction of ordinal sagebrush cover categories using spectral (χ2 = 113; p < 0.0001) and transformed indices (χ2 = 117; p < 0.0001). Both Landsat spectral bands (c-value = 0.88) and transformed indices (c-value = 0.89) can distinguish sites with closed, moderate and open cover sagebrush cover categories from no cover. The techniques described in this study can be used for estimating categories of sagebrush cover in arid ecosystems.  相似文献   

7.

Background

Pasture enclosures play an important role in rehabilitating the degraded soils and vegetation, and may also influence the emission of key greenhouse gasses (GHGs) from the soil. However, no study in East Africa and in Kenya has conducted direct measurements of GHG fluxes following the restoration of degraded communal grazing lands through the establishment of pasture enclosures. A field experiment was conducted in northwestern Kenya to measure the emission of CO2, CH4 and N2O from soil under two pasture restoration systems; grazing dominated enclosure (GDE) and contractual grazing enclosure (CGE), and in the adjacent open grazing rangeland (OGR) as control. Herbaceous vegetation cover, biomass production, and surface (0–10 cm) soil organic carbon (SOC) were also assessed to determine their relationship with the GHG flux rate.

Results

Vegetation cover was higher enclosure systems and ranged from 20.7% in OGR to 40.2% in GDE while aboveground biomass increased from 72.0 kg DM ha?1 in OGR to 483.1 and 560.4 kg DM ha?1 in CGE and GDE respectively. The SOC concentration in GDE and CGE increased by an average of 27% relative to OGR and ranged between 4.4 g kg?1 and 6.6 g kg?1. The mean emission rates across the grazing systems were 18.6 μg N m?2 h?1, 50.1 μg C m?2 h?1 and 199.7 mg C m?2 h?1 for N2O, CH4, and CO2, respectively. Soil CO2 emission was considerably higher in GDE and CGE systems than in OGR (P?<?0.001). However, non-significantly higher CH4 and N2O emissions were observed in GDE and CGE compared to OGR (P?=?0.33 and 0.53 for CH4 and N2O, respectively). Soil moisture exhibited a significant positive relationship with CO2, CH4, and N2O, implying that it is the key factor influencing the flux rate of GHGs in the area.

Conclusions

The results demonstrated that the establishment of enclosures in tropical rangelands is a valuable intervention for improving pasture production and restoration of surface soil properties. However, a long-term study is required to evaluate the patterns in annual CO2, N2O, CH4 fluxes from soils and determine the ecosystem carbon balance across the pastoral landscape.
  相似文献   

8.
Abstract

Spaceborne multispectral measurements have been found very useful tool in delineating soilscape boundaries. The Indian Remote Sensing Satellite (IRS 1B) Linear Imaging Self‐scanning Sensor (LISS‐II) data in the form of false colour composite (FCC) prints at 1:50,000 scale covering part of a complex terrain ‐ hard rock intermixed with the alluvium, were interpreted visually for mapping soil resources. The physiography and lithology of the terrain have been found to have a direct bearing on the occurrence of soils. The image elements which are the reflection of surface drainage, land use/land cover, wetness, etc have been helpful in segregating the broad physiographic units into their components. These sub‐divisions were ultimately found to be associated with the characteristic soils. The methodology and results are discussed in detail.  相似文献   

9.
Using high-resolution Google EarthTM images in conjunction with Landsat images, the glaciers and lakes in the Baspa basin are classified to explore the recent changes. A total number of 109 glaciers (187 ± 3.7 km2) are mapped and subsequently classified as compound valley glaciers, simple valley glaciers, cirques, niches, glacieretes and ice aprons. The compound and simple valley glaciers contribute 67.1 ± 1.3% and 19.8 ± 0.3% to the total glacier cover of the basin. Similarly, a total number of 129 glacial lakes (0.360 ± 0.007 km2) are identified. From 1976 to 2011, the compound valley glaciers have lost a small area of 10.3 ± 0.03% at a rate of 0.41 ± 0.002 km2 a-1, whereas the niche glaciers have lost higher area of 40.1 ± 0.001% at a rate of 0.04 ± 0.0001 km2 a-1. Change detection of two benchmark glacial lakes revealed a progressive expansion during recent decades. The Baspa Bamak proglacial lake has expanded from 0.020 ± 0.0004 km2 (2000) to 0.069 ± 0.001 km2 (2011). Due to the complete loss of source ice, another glacial lake has expanded from 0.09 ± 0.001 km2 (1994) to 0.10 ± 0.002 km2 (2011). During the study period, the mean annual temperature that is Tavg, Tmin and Tmax have increased significantly at the 95% confidence level by 1.5 oC (0.070 °C a-1), 1.8 oC (0.076 °C a-1) and 1.6 oC (0.0071 °C a-1) from 1985 to 2008. However, the precipitation has decreased significantly from 1976 and 1985 to 2008.  相似文献   

10.
Defoliation is a key parameter of forest health and is associated with reduced productivity and tree mortality. Assessing the health of forests requires regular observations over large areas. Satellite remote sensing provides a cost-effective alternative to traditional ground-based assessment of forest health, but assessing defoliation can be difficult due to mixed pixels where vegetation cover is low or fragmented. In this study we apply a novel spectral unmixing technique, referred to as weighted Multiple Endmember Spectral Mixture Analysis (wMESMA), to Landsat 5-TM and EO-1 Hyperion data acquired over a Eucalyptus globulus (Labill.) plantation in southern Australia. This technique combines an iterative mixture analysis cycle allowing endmembers to vary on a per pixel basis (MESMA) and a weighting algorithm that prioritizes wavebands based on their robustness against endmember variability. Spectral mixture analysis provides an estimate of the physically interpretable canopy cover, which is not necessarily correlated with defoliation in mixed-aged plantations due to natural variation in canopy cover as stands age. There is considerable variability in the degree of defoliation as well as in stand age among sites and in this study we found that results were significantly improved by the inclusion of an age correction algorithm for both the multi-spectral (R2no age correction = 0.55 vs R2age correction = 0.73 for Landsat) and hyperspectral (R2no age correction = 0.12 vs R2age correction = 0.50 for Hyperion) image data. The improved accuracy obtained from Landsat compared to the Hyperion data illustrates the potential of applying SMA techniques for analysis of multi-spectral datasets such as MODIS and SPOT-VEGETATION.  相似文献   

11.

Background

Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of deforestation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aperture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia.

Results

This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% year?1 and subsequently caused a carbon loss of approximately 9 million Mg C year?1, which is equal to emissions of 33 million Mg CO2 year?1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approximately 117 Mg ha?1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%.

Conclusion

The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the proposed method and findings of this study be considered for MRV in REDD+?implementation in Malaysia.
  相似文献   

12.
Digital processing of Landsat images has been considered the most appropriate interpretation method for vegetation mapping. However, digital processing presents several difficulties: (i) it demands significant inversions, with respect both the images and the equipment; (ii) it presents problems to discriminate heterogeneous categories, and (iii) it requires much more training effort.

Visual analysis, on the other hand, is less demanding both in economic investments and training. Therefore, it is a fruitful alternative to digital mapping, especially when it is applied to small and medium scale inventories. A consistent methodology for visual interpretation of vegetation categories is presented in this paper. Benefits and disadvantages of this procedure are analyzed, as well as keys‐for visual identification of land cover categories. A TM Quarter of scene on Central Spain is presented as an example of this method. Two false‐color images from different seasons were interpreted at 1: 250,000 scale. Fourteen land cover categories were identified, yielding 83.03% of final accuracy.  相似文献   

13.
In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR  RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx  Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2’s ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.  相似文献   

14.
15.
李旺  牛铮  高帅  覃驭楚 《遥感学报》2013,17(6):1612-1626
利用机载激光雷达点云数据,计算了9种度量指标,并将其分为冠层的高度指标、结构复杂度指标和覆盖度指标。利用高度指标和结构复杂度指标,结合大量实测单木结构与年龄估测数据,从样点和区域尺度分别分析了青海云杉林冠层垂直结构分布,分析得知实验区内主要以中龄林和成熟林为主,冠层垂直分布复杂程度偏低,高度分化程度一般。通过回归分析发现首次回波覆盖度指标FCI与实测的有效植被面积指数PAIe有良好的相关性(R2=0.66),在此基础上基于辐射传输模型反演了实验区内PAIe的水平分布,且用实测数据验证发现反演的PAIe略高于实测值(R2=0.67),绝对平均误差为0.65。分析结果很好地反映了激光雷达在森林空间结构信息提取方面的应用潜力。  相似文献   

16.

Background

Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.

Results

The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off.

Conclusion

Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.  相似文献   

17.
In the Bali and Pali tehsils of Pali district of western Rajasthan, which were affected by floods during the period August 6–10, 1990, using IRS-1A LISS-1 data of post-flood and ground truth, seven flood damage categories viz. (1) loss of bund and slight sheet erosion (2) loss of bunds, severe sheet and rill erosion and few gullies (3) deep gullies (4) water inundated area (5) moderate scouring and sand casting (6) severe scouring and sand casting and (7) river widening and bank cutting have been mapped. Out of seven, four categories could be mapped visually on the raw FCC (post-flood) and remaining three categories could be separated out from the digitally generated FCC. The PC2 was found to contain maximum information on soil erosion/deposition and inundated areas. Density-slicing of band-ratioed output gave maximum information on newly formed channels, water bodies and flow direction. The damage caused to be human beings, animals, agricultural lands, engineering structure by different type of flood hazards under various geomorphic flood zone and comparison between pre-flood and post-flood product has been highlighted.  相似文献   

18.
This paper examines the relationship of C-band radar backscatter from the Advanced Synthetic Aperture Radar on board the ENVISAT satellite with the local angle of incidence, whose influence on the received signal is significant, particularly in the modes of sensor operation that use the full swath of the orbit track. Linear regression is carried out for each pixel throughout a large time series of radar data over the whole of the state of Queensland, Australia, and at Great Salt Lake, Utah, USA. In the first case, the resultant coefficients are analysed for correlation against various parameters, with regolith showing the highest correlation. Class separability analysis shows the potential to use the resultant coefficients as a supplement to absolute threshold values in order to distinguish between classes of vegetation and/or geology, where cloud cover may preclude the use of optical data. It is observed that the separability between water and land is greatly higher using the slope coefficient B than using backscatter σ0, which may be of great benefit in the remote sensing of water where cloud cover is present (from which radar is largely independent). This is especially the case when considering the observed overlapping of backscatter values from water, with values from aeolian sand and lacustrine and alluvial sediments, rendering the use of backscatter alone problematic. In order to test the potential use of B to map water extents, the study over the Great Salt Lake compares the classification accuracy of B against that of σ0. It is found that the σ0 classification misrepresents desert, salt flat and dry lake basin areas, where the B classification differentiates these regions accurately. The resultant classification achieves a kappa statistic around 0.9, which shows very high conformance. An accurate and novel method to classify water is therefore demonstrated, which awaits the launch of anticipated improved synthetic aperture radar instruments on satellite missions in the coming few years.  相似文献   

19.
The uncertainties involved in remote sensing inversion of CDOM (Colored Dissolved Organic Matter) were analyzed in estuarine and coastal regions of three North American rivers: Mississippi, Hudson, and Neponset. Water optical and biogeochemical properties, including CDOM absorption and above-surface spectra, were collected in very high resolution. CDOM’s concentrations (ag(440), absorption coefficient at 440 nm) were inverted from EO-1 Hyperion images, using a quasi-analytical algorithm for CDOM (QAA-CDOM). Uncertainties are classified to five levels, in which the underwater measurement uncertainty (level 1), image preprocessing uncertainty (level 4) and inverse model uncertainty (level 5) were evaluated. Results indicate that at level 1, in situ CDOM measurement is significant with 0.1 in the unit of QSU and 0.01 in the unit of ag(440) (m−1). At level 4, surface wave is a potential uncertainty source for high-resolution images in estuarine and coastal regions. The remote sensing reflectance of wavy water is about 10 times of the truth. At level 5, the overall uncertainty of QAA-CDOM inversion is 0.006 m−1, with accuracy R2 = 0.77, k = 1.1 and RMSElog = 0.33 m−1. The correlations between uncertainties and other water properties indicate that the large uncertainty in some rivers, such as the Neponset and Atchafalaya, might be caused by high-concentration chlorophyll or sediments. The relationships among the three level uncertainties show that the level 1 uncertainty generally does not propagate into level 4 and 5, but the large uncertainty at level 4 usually introduce large uncertainty at level 5.  相似文献   

20.
温兆飞  张树清  吴胜军  刘峰  姜毅 《遥感学报》2013,17(6):1533-1545
由于外部成像环境和传感器本身设计指标的差异,不同遥感平台同一波段影像之间常常存在不一致。在多源遥感定量研究中,对外部成像环境导致的差异关注较多,而对以光谱响应函数(SRF)和空间点扩散函数(PSF)为代表的值感器本身设计指标,导致的影像不一致性(差异性)则考虑相对较少,这给后续研究结果的分析与讨论带来一定不确定性。为了提供一种全面、客观对不同遥感平台同一波段影像一致性评价方法,本文采用控制变量法的评价策略,介绍了利用Hyperion高光谱影像结合光谱响应函数模拟各种宽波段影像的方法,并将其用于多平台同一波段影像之间的一致性评价;同时在此基础上探讨了考虑PSF对高-低空间分辨率影像聚合过程的影响,为不同平台、同一波段、不同空间分辨率影像之间的一致性评价提供了技术参考。通过对常见的3种典型传感器Landsat ETM+,Terra MODIS,NOAA AVHRR 3近红外波段进行模拟、比较和一致性评价,结果表明:(1)利用本文所提出的宽波段光谱模拟方法,能较准确地模拟各种宽波段影像(在本文中平均相对误差的绝对值最大为-2.371%),并可用于多平台同一波段影像的数据评价(从光谱响应的角度)。 (2)为了比较不同平台、同一波段、不同空间分辨率之间的差异性,可将其中高分辨率影像进行尺度上推,得到与其中低分辨率影像相同像元大小的影像,然后再进行评价。在尺度上推过程中,需先考虑PSF效应(可用高斯低通滤波模拟),然后进行平均值聚合即可。在此基础上进行的一致性评价才是比较客观的,特别是针对异质性区域。本文所采用的评价方法不仅可为评价不同平台波段同一波段影像之间一致性提供很好的解决途径,而且为多源遥感数据选择提供了一种决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号