首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Two spectra of the ultra-violet nightglow from 1900 Å to 3400 Å have been recorded by a fast wide-field spectrograph during balloon flights from Aire sur Adour, France on 15 September, 1969 and on 5 October, 1970. These two spectra are composed of theOi line at 2972 Å, of the molecular oxygen Herzberg band systemA 3 u + X 3 g and of a molecular band system that seems to belong to the NO SystemX 2 C 2 X +, situated at 1991 ű4 Å, 2060 ű4 Å and 2136 ű4 Å. Around 2540 Å, there is absorption by ozone at the altitudes at which the spectra were recorded (35 km and 40 km). We present our calculated value of ozone absorption at 35 km, and the zenith-horizon variation of the nightglow emission.  相似文献   

2.
The calculation of number densities of CO2, H2O and N2 photolysis products was carried out for the Martian atmosphere at heights up to 60 km. The ozone distributed in the atmosphere as a layer of 10 km width with [O3] max = 2.5 × 109 cm3 at height of 35 km which agree well with the results of u.v. observations on the evening terminator from the Mars-5 satellite. The calculated densities of O2, CO and H2O are also in good agreement with the measured data. The eddy diffusion coefficient is equal to 3 × 106 in the troposphere (h ? 30 km) and 108 cm2 s?1 above 40 km. The dependence of the total ozone content on water vapour amount in the atmosphere is considered; the hypothesis about the influence of water ice aerosol on the ozone formation is proposed to explain the high concentrations of ozone in the morning.  相似文献   

3.
4.
The paper presents the seasonal variations of OI 6300 Å line night airglow emission at Calcutta and other stations. Their covariations with OI 5577 Å line are also offered. Explanation for the variation is also provided.  相似文献   

5.
Brekke  P.  Kjeldseth-Moe  O.  Brynildsen  N.  Maltby  P.  Haugan  S. V. H.  Harrison  R. A.  Thompson  W. T.  Pike  C. D. 《Solar physics》1997,170(1):163-177
EUV spectra obtained with the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) show significant flows of plasma in active region loops, both at coronal and transition region temperatures. Wavelength shifts in the coronal lines Mgix 368 Å and Mgx 624 Å corresponding to upflows in the plasma reaching velocities of 50 km s-1 have been observed in an active region. Smaller velocities are detected in the coronal lines Fexvi 360 Å and Sixii 520 Å. Flows reaching 100 km s-1 are observed in spectral lines formed at transition region temperatures, i.e., Ov 629 Å and Oiii 599 Å, demonstrating that both the transition region and the corona are clearly dynamic in nature. Some high velocity events show even higher velocities with line profiles corresponding to a velocity dispersion of 300–400 km s-1. Even in the quiet Sun there are velocity fluctuations of 20 km s-1 in transition region lines. Velocities of the magnitude presented in this paper have never previously been observed in coronal lines except in explosive events and flares. Thus, the preliminary results from the CDS spectrometer promise to put constraints on existing models of the flows and energy balance in the solar atmosphere. The present results are compared to previous attempts to observe flows in the corona.  相似文献   

6.
A GSFC Super Loki optical ozonesonde instrument was flown as part of the ozone sensor intercomparison balloon campaign at Gap, France, in June 1981. A primary objective was to confirm biases between external absorption techniques, such as the GSFC sonde, and in situ techniques, which include ECC, Mast-Brewer, and DASIBI sondes. Ozone distributions were obtained with the GSFC sonde on three of the four ascent-descent legs of the first flight on 19 June. Ozone densities were measured redundantly over altitudes from 22 to 32 km using filters centered at 303 and 300 nm. The three profiles obtained by averaging the data from the two channels are in close agreement with an average S.E. of 1.4%. However, small but consistent differences were found between the ozone densities measured at the two wavelengths. The average difference is 5% using Vigroux cross sections and 4% using preliminary Bass cross sections. The integral ozone amount above the first ceiling altitude of 32.85 km was determined by the Langley plot method to be 45 D.U. The total ozone derived by integrating the optical ozonesonde and ECC profiles is within 2% of the Chiran Dobson Spectrophotometer observation based on a pre-campaign calibration but is 9% greater than the amount derived using a post-campaign calibration.  相似文献   

7.
Balthasar  H.  Schmidt  W.  Wiehr  E. 《Solar physics》1997,171(2):331-336
Penumbral line-core shifts at different heights are determined from the lines Fei 5434.5 Å, Fei 5435.2 Å, and Nii 5435.8 Å using two adjacent water vapor lines for an absolute wavelength scale. The large granular blue shift of 0.6 km s-1 for the faint Fe 5435 line from deep layers yields for the centre-side penumbra absolute velocities up to 3 km s-1. This value is much larger than velocities deduced from the bisectors of the line wings of Ni 5436 and Fe 5434, thus supporting the concern against an interpretation of the line asymmetries in term of a velocity gradient with depth.  相似文献   

8.
We present absolute abundances and latitudinal variations of ozone and water in the atmosphere of Mars during its late northern spring (Ls=67.3°) shortly before aphelion. Long-slit maps of the a1Δg state of molecular oxygen (O2) and HDO, an isotopic form of water, were acquired on UT January 21.6 1997 using a high-resolution infrared spectrometer (CSHELL) at the NASA Infrared Telescope Facility. O2(a1Δg) is produced by ozone photolysis, and the ensuing dayglow emission at 1.27 μm is used as a tracer for ozone. Retrieved vertical column densities for ozone above ∼20 km ranged between 1.5 and 2.8 μm-atm at mid- to low latitudes (30°S-60°N) and decreased outside that region. A significant decrease in ozone density is seen near 30°N (close to the subsolar latitude of 23.5°N). The rotational temperatures retrieved from O2(a-X) emissions show a mean of 172±2.5 K, confirming that the sensed ozone lies in the middle atmosphere (∼24 km). The ν1 fundamental band of HDO near 3.67 μm was used as a proxy for H2O. The retrieved vertical column abundance of water varies from 3 precipitable microns (pr-μm) at ∼30°S to 24 pr-μm at ∼60°N. We compare these results with current photochemical models and with measurements obtained by other methods.  相似文献   

9.
An occultation of X-ray emission from a solar flare occurred during the eclipse of 7 March, 1970 and was observed by an NRL instrument aboard the OSO-5 satellite. Ionization chamber photometers covering the wavelength ranges 0.5–3 Å, 1–8 Å, and 8–16 Å provided flux measurements once every 15 s providing a spatial resolution of 20 arc sec at the solar surface. Within this limitation the X-ray flare was observed to be confined within a region 136 000 km in one dimension.However, the measurements indicate the existence of a denser core 54 000 km wide in the direction of advance of the Moon's limb. Comparison of these results with X-ray photographs of flare regions are made and a model for the development of the soft X-ray flare is proposed.  相似文献   

10.
Stellar ultraviolet light near 2500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Hartley continuum of ozone. The intensity of stars in the Hartley continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the ozone number density profile at the occultation tangent point. The results of approximately 12 stellar occultations, obtained in low latitudes, are presented, giving the nighttime vertical number density profile of ozone in the 60- to 100-km region. The nighttime ozone number density has a bulge in its vertical profile with a peak of 1 to 2×108 cm?3 at approximately 83 km and a minimum near 75 km. The shape of the bulge in the ozone number density profile shows considerable variability with no apparent seasonal or solar cycle change. The ozone profiles obtained during a geomagnetic storm showed little variation at low latitudes.  相似文献   

11.
During operations on the Spacelab-2 Shuttle mission, the NRL High Resolution Telescope and Spectrograph (HRTS) recorded spectra of a variety of solar features in the 1200–1700 Å wavelength region which contains spectral lines and continua well suited for investigating the temperature minimum, the chromosphere and transition zone. These data show that, at the highest spatial resolution, the transition zone spectra are broken up from a continuous intensity distribution along the slit into discrete emission elements. The average dimensions of these discrete transition zone structures is 2400 km along the slit, but an analysis of their emission measures and densities shows that the dimensions of the actual emitting volume is conciderably less. If these structures are modelled as an ensemble of subresolution filaments, we find that these filaments have typical radii of from 3 to 30 km and that the cross-sectional fill factor is in the range from 10–5 to 10–2. The transport of mass and energy through these transition zone structures is reduced by this same factor of 10–5 to 10–2 which has significant consequences for our understanding of the dynamics of the solar atmosphere. Because the HRTS transition zone line profiles are not broadened by resolved large-spatial-scale solar velocity fields, the line widths of the Civ lines have been analyzed. The average line width is 0.195 Å (FWHM) and requires an average nonthermal velocity of 16 km s–1 (most-probable) or 19 km s–1 (root-mean-square) which is lower than previously observed values.  相似文献   

12.
Jacques Gustin  Ian Stewart 《Icarus》2010,210(1):270-283
This study reports the analysis of far ultraviolet (FUV) limb spectra of the airglow of Saturn in the 1150-1850 Å spectral window, obtained with the Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini, spanning altitudes from −1200 to 4000 km. The FUV limb emission consists of three main contributions: (1) H Ly-α peaking at 1100 km with a brightness of 0.8 kilo-Rayleighs (kR), (2) reflected sunlight longward of 1550 Å which maximizes at −950 km with 16.5 kR and (3) H2 bands in the 1150-1650 Å bandwidth, peaking at 1050 km reaching a maximum of 3.9 kR.A vertical profile of the local H2 volume emission rate has been derived using the hydrocarbon density profiles from a model of the Saturn equatorial atmosphere. It is well matched by a Chapman function, characterized by a maximum value of 3.5 photons cm−3 s−1 in the 800-1650 Å UV bandwidth, peaking at 1020 km.Comparisons between the observed spectra and a first-order synthetic airglow H2 model in the 1150-1650 Å bandwidth show that the spectral shape of the H2 bands is accounted for by solar fluorescence and photoelectron excitation. The best fits are obtained with a combination of H2 fluorescence lines and 20 eV electron impact spectra, the latter contributing ∼68% of the total H2 airglow emission.  相似文献   

13.
A rocket experiment was conducted which measured the infrared bands of the excited hydroxyl radical in the night airglow. The OH emission was found in a layer centered at 87 km having a half-width of 6 km and a total emission of 1.1 MR. The atomic oxygen altitude profile, ranging from 1.3 × 1010 atoms/cm3 at 83 km to 3 × 1011 atoms/cm3 at 90 km is determined from the hydroxyl airglow measurements. This derivation is based on the steady state balance between ozone formation from atomic oxygen and its destruction by hydrogen which produces the OH infrared emission.  相似文献   

14.
Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the metastable electronic states and could represent a significant source of stored energy in O2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.  相似文献   

15.
Surface excitons in very small (10–20 Å) particles of MgO and CaO and other oxides are shown to absorb at the wavelength of the 2175 Å extinction bump. Required column densities of these oxides are compatible with cosmic elemental abundances if it is assumed that the Mie scattering theory is invalid for these quantum particles.  相似文献   

16.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   

17.
High internal motions of the ionized material in theHii regions M 8, M16, M 17 and the Orion Nebula were searched for with a two-etalon Fabry-Perot monochromotor. The profiles of the [Oiii], 5007 Å and in one case the 4959 Å line were obtained at many positions from these nebulae. Non-gaussian wings of up to –60 km/s were found on the profiles from M 17 and M 16 over regions several minutes across. Line doubling of up to 20 km/s was definitely found in M17 and M 8. Small components with radial velocities of up to –55 km/s with respect to the means were suspected in M 8 and the Orion Nebula.  相似文献   

18.
Kobanov  N.I.  Makarchik  D.V.  Sklyar  A.A. 《Solar physics》2003,217(1):53-67
In this paper we carry out an analysis of the spatial–temporal line-of-sight velocity variations measured in the chromospheric (H, H) and photospheric (Fei 6569 Å, Fei 4864 Å, Nii 4857 Å) lines at the base of 17 coronal holes. Time series of a duration from 43 to 120 min were recorded with the CCD line-array and the CCD matrix. Rather frequently we observed quasi-stationary upward flows with a measured velocity of up to 1 km s–1 in the photosphere and up to 4–5 km s–1 in the chromosphere (equivalent radial velocity of up to 3 km s–1 and up to 12–15 km s–1 accordingly) near dark points on the chromospheric network boundary inside polar CH. Line-of-sight velocity fluctuation spectra contain meaningful maxima in the low-frequency region clustering around the values 0.4, 0.75, and 1 mHz. Usually, the spatial localization of these maxima mutually coincides and, in our opinion, coincides with the chromospheric network boundary. Acoustic 3- and 5-min oscillations are enhanced in the coronal hole region and reach 1 km s–1 in the photosphere and 3–4 km s–1 in the chromosphere. These oscillations are not localized spatially and are distinguished throughout the entire region observed.  相似文献   

19.
Magnetic-field structure of the photospheric network   总被引:2,自引:0,他引:2  
A method is developed to determine the physical parameters of the spatially unresolved photospheric network. The apparent magnetic fluxes are recorded simultaneously in the two FeI lines 5250 and 5247 Å, which belong to the same multiplet and have practically the same oscillator strength and excitation potential of the lower level, but differ in the effective Lande factor. By analysing magnetograph recordings in this pair of lines together with simultaneous recordings in the two FeI lines 5250 and 5233 Å, it is possible to separate the effects on the line profiles due to Zeeman splitting and temperature enhancement in the network.From an analysis of the observations the following properties of the photospheric network are obtained: Field strengths of about 2000 G are present in the network in quiet regions. The characteristic size of the magnetic-field structures in the network appears to be in the range 100–300 km. The 5250 Å line is weakened by roughly 50% in the network. If the line had been non-magnetic, the weakening would have been about 20%. The rest of the weakening is caused by the strong Zeeman splitting. The downward velocity at the supergranular cell boundaries is estimated to be of the order of 0.5 km s-1.  相似文献   

20.
A study of the solar spectrum near helium 10 830 Å has shown that, where the line is very weak, the anomalous ratio of the two components is due almost certainly to faint blends. The centre-limb intensity variation over supergranule centres is in good agreement with an optically-thin law. The line is stronger over supergranule boundaries, and the ratio of the two components can be understood only if the absorbing elements have been resolved incompletely (as is probable); using centre-limb intensity variations, we have been unable to distinguish between unresolved horizontal platelets or inclined slabs.The integrated absorption in 10 830 Å over supergranule centres is double that at the boundaries. An analysis of the extension of 10 830 Å beyond the limb has failed to reveal the relative contributions from these two regions or their variations with height (though the supergranule-centre emission should be located relatively low). Line profiles in 10 830 Å, hydrogen Pa and Caii 8542 Å indicate that, out to at least 5000 km, line broadening is effectively non-thermal, with horizontal rms velocities of about 20 km s–1.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号