首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypotheses proposed to explain the origin of pseudotachylite bodies formed during impact cratering include: (1) frictional heating, (2) shock loading, (3) decompression or (4) drainage of impact melt into target rocks. In order to differentiate among these processes, we conducted detailed geochemical and petrographic analysis of the matrices in pseudotachylitic veins and dikes and of their respective wall rocks. Our analyses indicate that the chemical compositions of matrices locally deviate significantly from their immediate wall rocks and that assimilation of wall rock has substantially modified the pseudotachylite matrix compositions in places. Variable magnitudes of assimilation can be explained by the surface area of wall rock or its fragments in contact with melt, as well as the initial temperature and cooling rate of the pseudotachylitic melt. Chemical trends observed can be explained either by admixture of an exotic melt component with immediate wall rock or by mixing of melts derived from local lithologies. Trends in the compositional deviation of centimetre to metre-wide pseudotachylite dikes from their immediate wall rocks are consistent with the presence of a primary melt component having granitoid composition akin to the average composition of Vredefort Granophyre dikes. Within veins, melt transport can be geochemically and petrographically traced for distances of centimetres to metres, with the direction of melt transport from larger pseudotachylite veins toward smaller ones and into apophyses. Sulphide and silicate mineralogy indicates that the initial temperature of pseudotachylitic melt must have been at least 1200-1700 °C. Collectively, these characteristics point to an allochthonous origin of pseudotachylitic melt. We advocate the possibility that impact melt from the initially superheated impact melt sheet contributed to the formation of pseudotachylite bodies at Vredefort.  相似文献   

2.
The Cerro del Pueblo Formation in the state of Coahuila, Mexico is becoming recognized worldwide due to its abundant and diverse fossil material. While most previous paleontological work from this rock unit has been directed towards taxonomic investigation, this study is directed towards the taphonomy of a “duck-billed” dinosaur (Ornithischia: Hadrosauridae). The hadrosaur skeleton is represented by several skull bones, vertebrae and ribs, a scapula, pubis, and various appendicular elements. The following taphonomic parameters were considered: (1) bone frequency; (2) hydraulic equivalence; (3) degree of bone articulation; (4) abrasion; (5) weathering; (6) breakage; (7) tooth marks; and (8) trampling activities. The low degree of weathering and abrasion suggests that the specimen experienced a short time of subaerial exposure and underwent a short transportation distance before deposition. Burial occurred within a perimarine lagoonal environment. Furthermore, the lack of hydraulic equivalence with the rock matrix, a high degree of disarticulation and a chaotic distribution of the bones in the fossiliferous bed, suggest that it was transported as a “bloated carcass”. The finding of distinct types of tooth marks evidence some sort of predator/scavenging activities on the specimen. Finally, an almost vertical orientation of various bones and the presence of spiral fractures may indicate that these elements were trampled by other animals.  相似文献   

3.
Estimation of Block Sizes for Rock Masses with Non-persistent Joints   总被引:2,自引:3,他引:2  
Summary  Discontinuities or joints in the rock mass have various shapes and sizes. Along with the joint orientation and spacing, the joint persistence, or the relative size of the joint, is one of the most important factors in determining the block sizes of jointed rock masses. Although the importance of joint persistence on the overall rock mass strength has long been identified, the impact of persistence on rock strength is in most current rock mass classification systems underrepresented. If joints are assumed to be persistent, as is the case in most designs, the sizes of the rock blocks tend to be underestimated. This can lead to more removable blocks than actually exist in-situ. In addition, a poor understanding of the rock bridge strength may lead to lower rock mass strengths, and consequently, to excessive expenditure on rock support. In this study, we suggest and verify a method for the determination of the block sizes considering joint persistence. The idea emerges from a quantitative approach to apply the GSI system for rock mass classification, in which the accurate block size is required. There is a need to statistically analyze how the distribution of rock bridges according to the combination of joint orientation, spacing, and persistence will affect the actual size of each individual block. For this purpose, we generate various combinations of joints with different geometric conditions by the orthogonal arrays using the distinct element analysis tools of UDEC and 3DEC. Equivalent block sizes (areas in 2D and volumes in 3D) and their distributions are obtained from the numerical simulation. Correlation analysis is then performed to relate the block sizes predicted by the empirical equation to those obtained from the numerical model simulation. The results support the concept of equivalent block size proposed by Cai et al. (2004, Int. J. Rock Mech. Min. Sci., 41(1), 3–19).  相似文献   

4.
The effects of glacier ice block grounding on the morphology and sedimentology of proglacial fluvial outwash were examined during a glacier outburst flood or jökulhlaup, near Søndre Strømfjord, west Greenland. Observations made during and after the 1987 jökulhlaup both on the surface of an ice contact delta and within a confined valley sandur plain provided information about the formation of ice block obstacle marks and the significance of these bedforms for sandur morphology and sedimentology. Flow directions determined from obstacle mark morphology have been used successfully to chart flow direction changes on the falling limb of the jökulhlaup. Maximum flow depths for scour around stranded ice blocks may be given by 0·5–0·9 times the diameter of the ice block, as estimated from the depth of scour, the height of the obstacle shadow or the extent of ice block meltout sediments. Minimum flow depths can be represented by the height of the obstacle shadow above the mean bed level. The internal composition of the shadow indicates the ability of the flow to transport various sizes of material into the lee of obstacles. Ice block obstacle marks within the distal portion of the sandur initiated waning stage channel change. Proximal and lateral erosion around stranded ice blocks extended downstream from the ice block, forming chute channels which then captured waning stage flows, resulting in significant bar incision with associated deposition of lobate or deltaic deposits. It is suggested that ice block obstacle marks are important in terms of channel morphology, channel morphological change and their usefulness as palaeohydrological indicators.  相似文献   

5.
Several examples of fault-related pseudotachylites display a significantly higher initial magnetic susceptibility than their granitic host rock (10:1 to 20:1). These higher values are attributed to the presence of fine magnetic particles formed during melt quenching. The hysteresis properties of the particles indicate a single domain (SD) to pseudo single domain (PSD) magnetic grain size. The Curie temperature (Tc) of the magnetic particles is close to 580 °C.The natural remanent magnetization (NRM) of these pseudotachylites is also significantly higher than that of the host rock (up to 300:1). Such anomalously high remanence cannot be explained by a magnetization acquired in the Earth's magnetic field, regardless of pseudotachylite age.Ground lightning and other strong electric pulses can cause anomalously high NRM intensities. A ground lightning explanation seems unlikely to explain the systematically high NRM intensities, particularly in the case of recently exposed samples that have been collected from active quarries. Alternatively, high NRM intensities could be explained by earthquake lightning (EQL), a seismic phenomenon occasionally reported in connection with large magnitude earthquakes (M > 6.0).The coseismic electrical properties of the pseudotachylite vein–host rock system are characterized by (1) a core of molten material (high conductivity), (2) vapor-rich margins of thermally and mechanically fractured host rocks (low conductivity) and (3) moderately fractured to undeformed host rock (normal conductivity). Such a core conductor bordered by insulating margins is potentially responsible for the propagation of EQL pulses.The coseismic thermal history of pseudotachylite veins has been modeled in 2-D using conductive heat transfer equations. It shows that EQL can be recorded only during a brief time interval (less than 1 min) for a given vein thickness and host-rock temperatures. If the vein is too thick or if the host rock is too hot, the pseudotachylite remains above Tc after the electric pulse has lapsed.  相似文献   

6.
The structural geometry of a mylonite zone (the Woodroffe thrust) and the country rock in its immediate vicinity is described. Mylonitic schistosity formed axial planar to folds in country rock foliation and contains a mineral elongation lineation which is constant in orientation. However, the fold axes (and associated intersection lineation) spread in orientation within the mylonitic schistosity but with a strong maximum parallel to the mineral elongation lineation. It is demonstrated that the fold axes formed initially at approximately 90° to mineral elongation but rotated with increase in strain towards it. Where this phenomenon was homogeneous on a macroscopic scale, rotation of large blocks of country rock across zones of mylonitization accompanied reorientation of fold axes within the mylonite.The controversy of progressive simple versus progressive pure shear for mylonite zones is discussed in the light of recent fabric and other evidence. It is concluded that the inhomogeneous forms of both progressive pure shear and progressive simple shear played a part and that the former dominated initially but gradually gave way to the latter until brittle rupture with large simple-shear displacements on a zone lubricated by the formation of pseudotachylite, brought granulite over amphibolite facies rocks.  相似文献   

7.
Deep towed 30 kHz sidescan sonar data from the Saharan Debris Flow deposit, west of the Canary Islands, show spectacular backscatter patterns which are interpreted in terms of flow banding, longitudinal shears, lateral ridges (levees) and transported blocks. Identification of these features is based on high resolution seismic profiles and on a comparison with similar structures seen in better known environments including other marine debris flows and slides, subaerial sediment failures (particularly rock fall avalanches), glaciers and lava flows. Flow banding in the debris flow, picked out by bands of differing backscatter intensity, is on a scale of tens to hundreds of metres. It is considered to result from flow streaming of clasts, with variation in clast size between bands. This primary fabric is cut by a series of distinct flow-parallel longitudinal shears. Broad, high backscatter longitudinal bands along the edge of and within the debris flow are interpreted as lateral ridges associated with multiple flow pulses; the high backscatter possibly reflects either a concentration of coarse grained material or chaotic sediments deposited from a turbulent flow. Coherent, low backscatter patches are interpreted as rafted blocks, although streamlined haloes of high backscatter material around some blocks indicates differential movement between block and flow, possibly during the waning stages of the flow. A non-turbulent debris flow model is preferred, in which a raft of more or less coherent material is carried along by a base undergoing laminar flow. Speculatively, the lack of turbulent mixing preserves original sedimentological heterogeneity from the debris flow source area, possibly in the form of clast size distributions. These heterogeneous sediments are drawn out into a flow-parallel banding which is imaged as the flow-parallel backscatter intensity banding. The upper raft of material responds to cross-flow velocity differences, and perhaps to variations in the timing of flow movement, primarily by longitudinal shearing. More complex deformation of the flow banding occurs at the flow margins and around obstacles in the flow, where lateral velocity shear would be expected to be highest.  相似文献   

8.
《Journal of Structural Geology》2004,26(6-7):1317-1339
Classifying and assessing geotechnical aspects of rock masses involves combining parameters in various ways, guided by empirical considerations, to derive quantitative geotechnical parameters. Geological structures and the deformation history of rocks underpin the nature of rock masses. The kinematics of a deforming rock mass may occur as sliding along throughgoing discontinuities or as distributed sliding on block faces. Distributed sliding will tend to disrupt the continuity of planar structures such that data on the size and shape of blocks is needed, rather than relying on discontinuity orientation data alone. Orientation and spacing data can be combined to provide a geometric analysis of block systems from linear samples, such as drill core. Dihedral angles and spacing of sequential pairs of discontinuities provides a sample of the size and shape of blocks that can be interpreted stereologically. Further detail can be derived by combining neighbouring intersections that enclose or partially enclose individual blocks. The shape and size of a block can be represented on a stereograph with the enclosing faces shown as poles and their perpendicular distance from an arbitrary point inside the block shown as a number. Identifying the size and shape of specific blocks rather than relying on statistical methods is beneficial to critical aspects of design such as analysing keyblocks that would be exposed during excavations. The detailed characterization of block size and shape is also a step toward interpreting the kinematics of rock mass deformation and the analysis of rock masses as ultra-close packed dilatant granular systems.  相似文献   

9.
Pseudotachylite veins have been found in the mylonite zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. They are associated with faults with WNW-ESE to ENE-WSW or NE-SW trends which make a conjugate set, cutting foliations of the host mylonitic rocks with high obliquity. The mylonitic rocks comprise greenschist facies to prehnite-pumpellyite facies mineral assemblages. The mode of occurrence of the pseudotachylite veins indicates that they were generated on surfaces of the faults and were intruded as injection veins along microfractures in the host rocks during brittle deformation in near-surface environments. An analysis of the deformational and metamorphic history of the Hidaka Main Zone suggests that the ambient rock temperature was 200–300° C immediately before the formation of the Hidaka pseudotachylite. Three textural types of veins are distinguished: cryptocrystalline, microcrystalline and glassy. The cryptocrystalline or glassy type often occupies the marginal zones of the microcrystalline-type veins. The microcrystalline type is largely made up of quench microlites of orthopyroxene, clinopyroxene, biotite, plagioclase and opaque minerals with small amounts of amphibole microlites. The interstices of these microlites are occupied by glassy and/or cryptocrystalline materials. The presence of microlites and glasses in the pseudotachylite veins suggests that the pseudotachylites are the products of rapid cooling of silicate melts at depths of less than 5 km. The bulk chemical composition of the pseudotachylite veins is characterized by low SiO2 and a high water content and is very close to that of the host mylonitic rocks. This indicates that the pseudotachylite was formed by virtual total melting of the host rocks with sufficient hydrous mineral phases. Local chemical variation in the glassy parts of the pseudotachylite veins may be due to either crystallization of quench microlites or the disequilibrium nature of melting of mineral fragments and incomplete mixing of the melts. Pyroxene microlites show a crystallization trend from hypersthene through pigeonite to subcalcic augite with unusually high Al contents. The presence of pigeonite and high-Al pyroxene microlites, of hornblende and biotite microlites and rare plagioclase microlites may indicate the high temperature and high water content of the melt which formed the pseudotachylite veins. The melt temperatures were estimated to be up to 1100° C using a two-pyroxene geothermometer. Using published data relating water solubilities in high-temperature andesitic magmas to pressure, a depth estimate of about 4 km is inferred for the Hidaka pseudotachylites. Evidence derived from pseudotachylites in the Hidaka metamorphic belt supports the conclusion that pseudotachylite is formed by frictional melting along fault surfaces at shallow depths from rocks containing hydrous minerals.  相似文献   

10.
The meta-anorthosite is locally deformed by brittle shear fracturing, which progressively increases from isolated fractures with little cataclasite to many generations of closely spaced fractures, the intervening rock being highly deformed, in both a plastic and brittle way. In most cases an E-W compression on gently dipping to steep reverse shear planes occurs, which we relate to a Caledonian thrust zone.In places, the highly deformed rock is cut by pseudotachylite veins, which locally form networks. The pseudotachylite is generally intrusive, but does not appear to be related to movement on major slip surfaces. Very locally it may have formed in situ. Pseudotachylite only occurs in highly deformed rock, is only very occasionally deformed itself and, thus, generally represents at each locality the last stage of a complex deformation history, as if its presence welded the rock and prevented further deformation. These striking differences from the country-rock gneisses (in which pseudotachylite occurs on well developed fractures in very slightly deformed rock) are considered to be due to the low anisotropy of the meta-anorthosite, to its lower shear strength and to the easy propagation and branching of the shear fractures in plagioclase. The source of the heat necessary to generate the pseudotachylite melt is not clear—it may come from crack propagation as well as frictional sliding.  相似文献   

11.
蒋海明  李杰  王明洋 《岩土力学》2019,40(4):1405-1412
深部岩体具有块状层次结构,深部动载造成岩块发生相互间的振动脱离产生低摩擦效应,从而极易诱发原先处于平衡状态的岩体的动力变形破坏。在前人研究基础上,将块系岩体振动简化为等效质量-黏弹性模型,引入岩石摩擦滑移速率弱化模式,最终得到块系岩体滑移失稳计算模型。通过计算分析块系岩体自身特性及外荷载特性对岩块间低摩擦效应的影响。理论计算表明:水平静力及外扰动保持不变,增大岩块间弹性系数或者减小黏性系数,更容易引发岩体低摩擦滑移。随着冲击扰动、水平拉力幅值的增加,岩块的水平残余位移量值增加,当它们幅值超过一临界值时,岩块发生自持续滑移失稳运动。冲击扰动诱发岩块间不可逆位移、动力滑移失稳的临界能量与剪切力水平密切相关,在较大的剪切内力条件下,极其微弱的动力扰动即可诱发较大的岩块间不可逆位移甚至岩块的动力滑移失稳,随着剪切内力的减小,诱发岩块滑移失稳的能量阈值不断增大,当剪切内力低于岩块动摩擦强度时,单次冲击扰动只能诱发岩块间的不可逆位移。初步开展扰动诱发含初应力紫砂岩块体滑移试验,试验结果与理论计算基本符合,证明该模型的可行性。  相似文献   

12.
Summary  We study the effects of discontinuity network parameters on the formation of removable wedges in rock slopes. Discontinuities are simulated using the Poisson disk model, and removable wedges are identified using block theory. The formation of removable wedges of different sizes is assumed to follow a Poisson process. Poisson regression and Monte Carlo simulation are then used to identify statistically relevant parameters of the model, and to study the effects that variations in their values have on formation of removable blocks. The sensitivity of the results as a function of the mean orientations of the discontinuity sets forming the blocks is also studied by means of a parametric study. The volumetric intensity of discontinuities in the rock mass is found to have a significant impact on the computed estimates of removable block formation. As predicted by theory, our results indicate that, everything else being equal, the expected rate of formation of removable wedges is proportional to the square of the intensity measure. Estimates are also sensitive to changes in discontinuity size, especially in cases in which discontinuities are smaller than one to two times the height of the slope. The interaction between the mean size of discontinuities and the coefficient of variation of discontinuity sizes is found to be significant as well. Finally, results of our sensitivity analysis suggest that the orientation of discontinuity sets significantly affects the rate of formation of removable blocks in rock slopes. Author’s address: Dr. Rafael Jimenez-Rodriguez, ETS Ing. de Caminos, Canales y Puertos. Universidad Politecnica de Madrid, Spain  相似文献   

13.
东营盆地渐新世沙河街组第三段中部前三角洲暗色泥岩中,有许多长条状透镜状砂质碎屑岩体。它们的岩性以具有大量内碎屑为显著特征;并且,在泥质薄层和泥质撕裂块内,具有流纹构造;在韵律组成上,表现出上部为刚性筏、下部为层流段沉积的基本的二分性结构。本文认为这些是泥石流(碎屑流)沉积物,与浊流沉积物具有不同的特点。文内还将湖盆中内碎屑泥石流细分为砂质泥石流、粉砂质泥石流、碳酸盐质泥石流和泥质泥石流,并按组构和岩性讨论了沉积物的韵律分段及其成因意义。  相似文献   

14.
Abstract Discontinuous ultramylonite zones cut Proterozoic granulite facies gneisses in MacRobertson Land, east Antarctica, and preserve evidence of ductile non-coaxial flow and reverse sense of shear. Cross-cutting relationships indicate that ultramylonite deformation involved overthrusting to the east, but progressively rotated to involve overthrusting to the north; rotation of the principal compressive stress axes is inferred. Extensive pseudotachylite developed during ultramylonitization, the history of individual ultramylonite zones having involved a single episode of pseudotachylite generation. Neoblastic sillimanite indicates ultramylonitization occurred at >520° C. On the basis of inferred recrystallized granulite facies mineral assemblages ultramylonitization occurred at >700° C, and ≤7.3 ± 0.5 kbar, at aH2O± 0.3 and low aCO2. Comparison of these values with those suggested by metamorphic assemblages in rocks unaffected by mylonitization indicates that the Rayner Complex experienced a late increase in pressure of 1–2 kbar during ultramylonitization. The P-T-aH2O conditions of the ultramylonite zones are inferred to have been close to the solidus for minimum melting, pseudotachylite generation having involved a limited pressure drop during brittle fracturing at high strain rates. Most of the pseudotachylite veins are undeformed; the mechanism(s) of fracturing and melting must have caused strain hardening in rocks surrounding the ultramylonite, further strain having been mostly accommodated by a new or subsidiary shear zone. Renewed stress at reduced strain rates, or renewed stress in zones in which the proportion of pseudotachylite was significantly higher, could have led to the rare occurrences of deformed pseudotachylite. The preservation of fine-grained pseudotachylite is dependent on it remaining dry.  相似文献   

15.
大别造山带东部假玄武玻璃的显微构造特征及其意义   总被引:3,自引:0,他引:3  
最近,在大别造山带东部发现了广泛的地震成因假玄武玻璃,这些假玄武玻璃主要呈简单脉状沿NE-SW向走滑断裂带或剪切带发育,后者大多与郯庐断裂带平行并穿切了包括白垩纪花岗岩在内的地质体。某些假玄武玻璃内发育由暗色石英条纹构成的糜棱质条带。本文通过普通光学显微镜和扫描电镜观察分析,详细研究对比了不同断裂带内部发育的假玄武玻璃及其围岩在显微构造特征上的差异及联系。根据岩石的组构特征,证实所发现的这些假玄武玻璃主要是由母岩的超碎裂岩化形成的,但在点1发育的假玄武玻璃基质的扫描电镜影象特征上,沿某些残斑矿物(钾长石、斜长石、黄铁矿)的边缘可以看到些许代表摩擦熔融成因的熔蚀状港湾结构,说明假玄武玻璃形成过程中曾经发生了程度较低的局部熔融作用。肉眼所见到的糜棱质石英条纹在显微镜下证实为早期的糜棱面理。同时,岩石组构的叠加显示,含假玄武玻璃的断裂带及假玄武玻璃本身普遍具有多期性,且晚期构造产物(或假玄武玻璃)总是较早期产物(或假玄武玻璃)碎裂岩化作用更加强烈,说明先期存在的构造软化带在控制假玄武玻璃形成过程中起着非常重要的作用,即构造带抬升过程中伴随的多期构造及细粒化是形成假玄武玻璃的基础。岩石的变形序列总体上显示为韧性-韧脆性-脆性的演化过程,从而证实了这些假玄武玻璃总体上形成于造山带抬升过程,而不是早期的俯冲过程。  相似文献   

16.
Rock glaciers and block fields,review and new data   总被引:1,自引:0,他引:1  
Tongue-shaped and lobate rock glaciers are recognized in most alpine regions today. For the tongue-shaped, two situations emerge: those with buried glacier ice (debris-covered glaciers) called ice-cored rock glaciers, and those with interstitial ice known as ice-cemented rock glaciers. Those with ice cores are revealed by depressions between rock glacier and headwall cliff (where a former glacier melted), longitudinal marginal and central meandering furrows, and collapse pits. Ice-cemented rock glaciers ordinarily do not possess these features. As applied to 18 rock glaciers in the Colorado Front Range, 11 of 12 east of the Continental Divide are ice-cored, 6 west of the Divide are ice-cemented. The majority of lobate rock glaciers in the Colorado Front Range are on the south sides of valleys, and, except for talus, are the most voluminous form of mass wasting. All those active and above treeline have characteristics common to all rock glaciers. In addition, they originate from talus, contain interstitial ice, move outward from valley walls at 1–6 cm/yr, and transport more debris as a process of erosion than heretofore realized. Block fields and block slopes, in polar and alpine regions, are thin accumulations of angular to subrounded blocks, on bedrock, weathered rock, or transported debris. They extend along slopes parallel to the contour. Block streams are similar but extend downslope normal to the contour and into valleys. They are made of interlocked blocks without interstitial detritus, but many have finer material deeper inside. The fabric of surface blocks indicates that motion most likely occurred during a periglacial time when interstitial debris, now washed or piped out, permitted movement of the whole deposit.  相似文献   

17.
The analysis of dowels (non pre-stressed passive reinforcements) for the stabilization of potentially unstable rock blocks due to sliding is one of the most interesting problems concerning the static of underground rock chambers. The stabilizing force produced by dowels is not in fact known a priori and it depends on the dowel–rock interaction. The parameters that influence the problem are not only the geometrical ones of the dowel, but also the mechanical characteristics of the rock and the orientation of the displacement vector of the block. A detailed study of the dowel–rock interaction has been carried out in this work. This analysis is able to lead to the evaluation of the axial and shear forces in the dowel in correspondence to the crossed discontinuity of the block. The vectorial composition of these two forces constitutes the stabilization force of the dowel. An extensive parametric analysis then made it possible to determine the great variability of the stabilization force of the dowel in function of the influential parameters of the problem. The graphics that were obtained can be considered a useful design instrument as they quickly allow the dimensioning of the dowels to be done to reach the required safety factor for the rock block.  相似文献   

18.
石海(石河/冰石河)作为冰缘地貌的重要标志之一,在国内地学界尚未引起足够的重视,以至于缺少介绍石海结构特征的中文文献,更未建立判别标准,在地貌认知阶段就发生很多误判。为了揭示石海的剖面结构特征,笔者等对位于大兴安岭南段的赛罕乌拉国家级自然保护区乌兰坝石海首次进行了开挖解剖,从而归纳了原生石海的基本结构特征:岩块棱角鲜明,呈镂空状堆积,岩块直径总体上上大下小。根据野外调查确认,赛罕乌拉海拔1800 m以上的区域至少还存在着局部现代石海,也就是说,还残存着不连续冻土带,而且保持年平均气温0℃左右的气候环境。根据赛罕乌拉现今气候记录和石海分布,笔者等估算了全新世初期赛罕乌拉石海开始发育时的地表温度在0~-4℃,而今天年平均气温已经升高到2℃,升温幅度2~6℃。根据赛罕乌拉石海剖面结构特征,笔者等对山东蒙山石河进行了结构对比,认为二者剖面结构基本一致,排除了前人近年来争议明显的冰川侧碛堤和泥石流成因说。结构对比揭示山东蒙山境内全新世早期至少局部存在过冰缘气候环境,而这也为山东境内更新世冰川地貌研究提供了重要的信息。此外,本研究也为中国冰缘地貌解剖和资源调查提供了一个可以参考的研究实例。  相似文献   

19.
The study investigates the possibility to incorporate fracture intensity and block geometry as spatially continuous parameters in GIS-based systems. For this purpose, a deterministic method has been implemented to estimate block size (Bloc3D) and joint frequency (COLTOP). In addition to measuring the block size, the Bloc3D Method provides a 3D representation of the shape of individual blocks. These two methods were applied using field measurements (joint set orientation and spacing) performed over a large field area, in the Swiss Alps. This area is characterized by a complex geology, a number of different rock masses and varying degrees of metamorphism. The spatial variability of the parameters was evaluated with regard to lithology and major faults. A model incorporating these measurements and observations into a GIS system to assess the risk associated with rock falls is proposed. The analysis concludes with a discussion on the feasibility of such an application in regularly and irregularly jointed rock masses, with persistent and impersistent discontinuities.  相似文献   

20.
In this study, a geotechnical model has been used to analyze the stability of a discontinuous rock slope. The main idea behind block theory is that it disregards many different combinations of discontinuities and directly identifies and considers critical rock blocks known as “key blocks”. The rock slope used as a case study herein is situated in the sixth phase of the gas flare site of the South Pars Gas Complex, Assalouyeh, Iran. In order to analyze the stability of discontinuous rock slopes, geotechnical modeling which was divided into geometrical sub-modeling and mechanical sub-modeling has been utilized. This model has been established upon the KGM (key-group method) algorithm which was based on the limit equilibrium method and block theory and prepared and coded by the Mathematica software. According to the results of the stability analysis, the analyzed slope was determined to be in the category of “needs attention,” and the security level, calculated through the FORM (first-order reliability method) analysis, was estimated to be 1.16. In order to verify the model, the results obtained from the model were compared with those of the UDEC software, which is a numerical method based on distinct components. As a conclusion, it was determined that the results of the model agreed well with those of the numerical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号