首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe our BEARALERT program of predicting solar flares or rapid development of activity in certain sunspot groups. The purpose of the program is to test our understanding of the flare process by making public predictions via electronic mail. Neither the exact timing of the flare nor the possibility of emergence of new active regions can be predicted. But high-resolution observations of the magnetic configuration, Ha brightness and structure and other properties of a region enabled us to announce the onset of 15 of 23 major active regions over a two-year period, and 15 of 32 BEARALERTS were followed by this activity. We used high-resolution real-time data available at the Big Bear Solar Observatory (BBSO). The criteria for prediction are given and discussed, along with those for filament eruption.The success fo the BEARALERT is evaluated by counting the M- and X-class flares in six days following the alert and comparing these results with those of a number of other predictive schemes. We find the single regions chosen had about 30% more flares than the whole disk on random days, or several times more than individual regions chosen at random. There was a gain of 1.5 to 2.0 times in flare frequency compared to regions selected by spot size or complexity. We also find an improvement of 20–40% over large or complex regions that have had some flares already. The ratio of improvement has increased with time as we gained experience. In the 24-hr period following each alert, one or more M-class or greater flares occurred 72% of the time.We also checked the possibility of prediction by the 152-day interval which some workers have claimed, but found those results slightly worse than random and considerably inferior to the BEARALERTS. All of the particularly active regions that were missed either occurred during bad weather at BBSO or were missed because we only issued alerts for one region at a time.  相似文献   

2.
Wang  Haimin 《Solar physics》1997,174(1-2):163-173
This paper reviews studies of the relationship between the evolution of vector magnetic fields and the occurrence of major solar flares. Most of the data were obtained by the video magnetograph systems at Big Bear Solar Observatory (BBSO) and Huairou Solar Observatory (HSO). Due to the favorable weather and seeing conditions at both stations, high-resolution vector magnetograph sequences of many active regions that produced major flares during last solar maximum (1989–1993) have been recorded. We have analyzed several sequences of magnetograms to study the evolution of vector magnetic fields of flare productive active regions. The studies have focused on the following three aspects: (1) processes which build up magnetic shear in active regions; (2) the pre-flare magnetic structure of active regions; and (3) changes of magnetic shear immediately preceding and following major flares. We obtained the following results based on above studies: (1) Emerging flux regions (EFRs) play very important roles in the production of complicated photospheric flow patterns, magnetic shear and flares. (2) Although the majority of flares prefer to occur in magnetically sheared regions, many flares occurred in regions without strong photospheric magnetic shear. (3) We found that photospheric magnetic shear increased after all the 6 X-class flares studied by us. We want to emphasize that this discovery is not contradictory to the energy conservation principle, because a flare is a three-dimensional process, and the photosphere only provides a two-dimensional boundary condition. This argument is supported by the fact that if two initial ribbons of a flare are widely separated (which may correspond to a higher-altitude flare), the correlation of the flare with strong magnetic shear is weak; if the two ribbons of a flare are close (which may correspond to a lower-altitude flare), its correlation with the strong shear is strong. (4) We have analyzed 18 additional M-class flares observed by HSO in 1989 and 1990. No detectable shear change was found for all the cases. It is likely that only the most energetic flares can affect the photospheric magnetic topology.  相似文献   

3.
The relationship between the flaring rates and 8.6 mm brightness temperatures of active regions has been analyzed. We find that as the 8.6 mm brightness temperature of an active region increases, a larger proportion of the energy released by the region in the form of flares is contained in progressively larger flares. At all temperatures subflares are the most frequent event. At intermediate and high temperatures about 10% of the events are flares of importance 1 or larger with flares of importance 2 or larger contributing an increasing fraction of these events as the brightness temperature increases.  相似文献   

4.
We apply discriminant analysis to 1023 active regions and their subsurface-flow parameters, such as vorticity and kinetic helicity density, with the goal of distinguishing between flaring and non-flaring active regions. We derive synoptic subsurface flows by analyzing GONG high-resolution Doppler data with ring-diagram analysis. We include magnetic-flux values in the discriminant analysis derived from NSO Kitt Peak and SOLIS synoptic maps binned to the same spatial scale as the helioseismic analysis. For each active region, we determine the flare information from GOES and include all flares within 60° central meridian distance to match the coverage of the ring-diagram analysis. The subsurface-flow characteristics improve the ability to distinguish between flaring and non-flaring active regions. For the C- and M-class flare category, the most important subsurface parameter is the so-called structure vorticity, which estimates the horizontal gradient of the horizontal-vorticity components. The no-event skill score, which measures the improvement over predicting that no events occur, reaches 0.48 for C-class flares and 0.32 for M-class flares, when the structure vorticity at three depths combined with total magnetic flux are used. The contributions come mainly from shallow layers within about 2 Mm of the surface and layers deeper than about 7 Mm.  相似文献   

5.
We present new temporal-evolution diagnostics of solar flares. The high-order statistical moments (skewness and kurtosis) of the Hα images of active regions during solar flares were computed from their initial phases up to their maxima. The same method was used for quiet active regions for tests and comparison. We found that temporal profiles of the Hα statistical moments during flares roughly correspond to those observed in soft X-rays by the GOES satellite. Maxima of the cross-correlation coefficients between the skewness and the GOES X-rays were found to be 0.82?–?0.98, and the GOES X-rays are delayed 0?–?144 seconds against the skewness. We recognized that these moments are very sensitive to pre-flare activities. Therefore we used them to determine the flare starting-time and to study the pre-flare quasi-periodic processes. We determined the periods of these pre-flare processes in an interval of 20?–?400 seconds by using special convolution filters and Fourier analysis. We propose to use this method to analyze active regions during the very early phases of solar flares, and even in real time.  相似文献   

6.
Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.  相似文献   

7.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

8.
本文对太阳活动第21周、22周(1976年—1992年间)97个质子活动区进行统计分析,包括活动区的面积、型别、磁结构、半影纤维等,结果表明:75%的质子耀斑产生于面积为500≤Sp≤3000单位的黑子群中;耀斑爆发前一天及后一天活动区面积有显著减少;质子活动区含δ复杂磁结构的占70%;具有半影旋涡形态的质子活动区中,约77%的耀斑发生在旋涡黑子出现以后。  相似文献   

9.
By analysing the relationship between flares and the morphology of velocity and magnetic fields in active regions AR 5528, AR 5629, and AR 6891, we found that initial brightening points at the earliest phase and flare ribbons at the maximum phase are more closely related to the velocity field patterns than to magnetic field patterns. We also found that the velocity patterns related to the flares are different from Evershed flows in the chromosphere. Finally, a model of vortex-induced reconnection has been applied to solar flares and some preliminary results are discussed.  相似文献   

10.
Schmidt  Joachim M. 《Solar physics》2000,197(1):135-148
Three sympathetic flares were observed with the Solar Magnetic Field Telescope (SMFT) at the Huairou Solar Observing Station of Beijing Astronomical Observatory on 29 August, and 1 September 1990. Each set of sympathetic flares had three ribbons. Two ribbons appeared in active region NOAA 6233 and one ribbon occurred in NOAA 6240 embedded in a single polarity area. Photospheric vector magnetograms were simultaneously obtained from both regions as well. We use a new numerical technique to reconstruct the chromospheric and coronal magnetic fields by making use of the observed vector magnetic fields in the photosphere as boundary conditions. Magnetic field loops linking both regions were identified from the reconstructed 3-D fields. The analysis of chromospheric filtergrams and reconstructed 3-D magnetic fields indicates that interaction between a sheared lower loop in the active region NOAA 6233 and a higher loop linking the two regions resulted in sympathetic flares. The analysis of the time delay between flare ribbons in NOAA 6233 and 6240 indicates that heat conduction along the higher loop from the primary energy release site is responsible for the sympathetic flaring in NOAA 6240. The events reported in this paper represent only one alternative as the cause of sympathetic flaring in which energy transport along coronal interconnecting loops plays the major role, and no in-situ energy release is required.  相似文献   

11.
Earlier results concerning sympathetic flares - physically related flares occurring in different active regions practically in the same time - and time-correlated radio bursts are compared with magnetic situation in active regions with related flaring and with the history and dynamics of its development. We found observational evidence abou the reality of sympathetic flares, demonstrating also that active regions in which they appear are physically related through common dynamical elements in which the evolution of their magnetic fields goes parallel. Such a process may sometimes occupy a very large volume of the photosphere and we believe that it might be related to the large-scale convective motions.  相似文献   

12.
In a previous paper, we suggested that the twisting of coronal magnetic fiels by photospheric motions produces the steady heating of an active region, while braiding of these fields stores energy which is eventually released in an avalanche process, as sporadic large flares. We explore these ideas with numerical simulations. Our results indicate that the combined effect of twisting and braiding can account for the observed power input and the flare frequency spectrum of typical active regions.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under coooperative agreement with the National Science Foundation.  相似文献   

13.
The history of a series of active regions is traced for the first half of 1969. At least four active regions successively occupied positions near Carrington longitude 270. In some cases the emergence of new regions in the midst of old regions was observed. All the larger flares observed in the studied region were associated with inverted polarity. In some cases the fields emerged inverted; in other cases the inverted polarity appeared to result from the interaction of emerging flux with fields already present at the surface.  相似文献   

14.
We investigate the total helicity change rate of active regions during the time period of three X-class and five M-class flares using MDI full-disk magnetograms which are sufficient to calculate the advection and the shuffling terms. Two out of three regions with X-class flares show a significant change in the helicity change rate, while none of the five active regions with an associated M-class flare shows this behavior. A closer investigation of the active regions associated with a helicity change reveals certain peculiarities that point to an artificial signal due to the magnetic reversal effect. This is supported by the fact that a simulation of the reversal effect reproduces the same shape of the helicity signal, although with an amplitude one magnitude lower. We investigate active regions with no flaring activity and determine the fluctuations of the helicity change rate due to instrumental effects to be 12 × 1040 Mx2 h-1.  相似文献   

15.
Prefiare conditions, changes and events are loosely categorized as distinct, evolutionary or statistical. Distinct preflare phenomena are those for which direct physical associations with flares are implied. Also, they are not known to occur in a like manner during the absence of flares. These include the early stage of filament eruptions within active centers, preflare vortical structures, some transient X-ray emitting features, 5303 Å accelerating coronal arches, and increases in circular polarization at cm wavelengths. Evolutionary preflare changes are considered to be any long-term effect that may be related to the flare build-up even though the same changes may occur in the absence of flares. This category covers the development of current sheets or strongly sheared magnetic fields, evolving magnetic features, emerging flux regions, the development of satellite fields around sunspots, the evolution of reverse polarity field configurations, the merging of adjacent active centers, sunspot motions and the development of velocity patterns. Statistical preflare changes logically include both distinct and evolutionary preflare changes. However, in addition, there are preflare conditions and events that are not necessarily linked to the flare in either a direct physical or indirect evolutionary way. Such parameters or events that may only be statistically significant are certain magnetic field properties, the brightness of active centers at various wavelengths, the previous occurrence of flares and subflares, increased turbulence in filaments and certain radio events.  相似文献   

16.
Solar coronal mass ejections (CMEs) show a large variety in their kinematic properties. CMEs originating in active regions and accompanied by strong flares are usually faster and accelerated more impulsively than CMEs associated with filament eruptions outside active regions and weak flares. It has been proposed more than two decades ago that there are two separate types of CMEs, fast (impulsive) CMEs and slow (gradual) CMEs. However, this concept may not be valid, since the large data sets acquired in recent years do not show two distinct peaks in the CME velocity distribution and reveal that both fast and slow CMEs can be accompanied by both weak and strong flares. We present numerical simulations which confirm our earlier analytical result that a flux‐rope CME model permits describing fast and slow CMEs in a unified manner. We consider a force‐free coronal magnetic flux rope embedded in the potential field of model bipolar and quadrupolar active regions. The eruption is driven by the torus instability which occurs if the field overlying the flux rope decreases sufficiently rapidly with height. The acceleration profile depends on the steepness of this field decrease, corresponding to fast CMEs for rapid decrease, as is typical of active regions, and to slow CMEs for gentle decrease, as is typical of the quiet Sun. Complex (quadrupolar) active regions lead to the fastest CMEs. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
As compared with the Mount Wilson Magnetic Classification (MWMC), effective distance (d E) is a useful parameter because it gives a quantitative measure of magnetic configuration in active regions. We have analyzed magnetograms of 24 active regions of different types with MWMC. We have studied the evolution of magnetic fields of five active regions using d E, total flux (F t) and tilt angle (Tilt) quantitatively. Furthermore, 43 flare-associated and 25 CME-associated active regions have been studied to investigate and quantify the statistical correlation between flares/CMEs and the three parameters. The main results are as follows: (1) There is a basic agreement between d E and MWMC. (2) The evolution of magnetic fields can be described in three aspects quantitatively and accurately by the three parameters, in particular by d E on the analysis of δ-type active regions. (3) The high correlation between d E and flares/CMEs means that d E could be a promising measure to predict the flare-CME activity of active regions.  相似文献   

18.
Using a newly developed Aerospace digital videomagnetograph, three solar active regions are studied as to their magnetic configurations and their flare productivity. These three regions have very different types of magnetic configurations and different types of flare productivity. We review previous theoretical and experimental research on flares and magnetic energy storage, and discuss various ways to observe magnetic energy release due to flares. Results for six subflares are presented. Five showed no measurable magnetic energy change and one result is questionable.We show three counterexamples to Zirin's (1972) contention that as a rule H plage brightness is proportional to magnetic field strength. Each of these three cases involved two plage regions of the same polarity and equal field strengths with one of the plages adjacent to a neutral line. In all three cases the plage region nearer the neutral line was much brighter.  相似文献   

19.
In this paper, the theory and method of fuzzy mathematics are applied to forecast the activity of solar active regions. According to the correlation between flares and several solar activity indices of active regions, the membership functions are constructed to comprehensively evaluate and predict the activity of solar active regions. By means of data reduction and analysis, some comparatively accurate results of prediction have been obtained. The accuracy of predicting the activity grades of active regions is higher than 97%. This implies that the method of fuzzy forecast is a good one for solar activity prediction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
B. R. Pettersen 《Solar physics》1989,121(1-2):299-312
We review the flaring activity of stars across the HR-diagram. Brightenings have been reported along the entire Main Sequence and in many stars off the Main Sequence. Some stars are decidedly young, others are in advanced stages of stellar evolution. Flares are common on stars with outer convection zones and outbursts have been reported also on other types of stars, although confirmations are needed for some of them.Analyses of flare occurrence sometimes find flares to be randomly distributed in time, and sometimes indicate a tendency for flares to come in groups. Preferred active longitudes have been suggested. Recent solar results, where the occurrence rate for flares is found to exhibit a periodicity of 152 days, suggest that stellar flare data should be reanalyzed over long time baselines to see if the present confusing situation can be resolved.The radiation from stellar flares is dominated by continuum emission and about equal amounts of energy have been recorded in the optical, UV, and X-ray regions of the spectrum. In solar flares strong continuum emission is rarely recorded and a large collection of bright emission lines takes prominence. Small flares occur more frequently than large ones and the latter have longer time-scales. Flare energies can exceed 1037 erg. The most productive flare stars are those where the convective envelopes occupy large volumes. Slow stellar rotation rates are believed to reduce the level when the star has been braked significantly from its young rotation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号