首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prokopenko and Kendall (J Paleolimnol doi:, 2008) criticise the work presented in Fedotov et al. (J Paleolimnol 39:335–348, 2008), and instead propose an alternative interpretation for the grain-size evolution recorded in the KDP-01 core, retrieved from the central part of Lake Khubsugul. Their interpretation is based (i) on a seismic-stratigraphic re-interpretation of sparker seismic profile khub012 (which they copied from Fedotov et al. (EOS Trans 87:246–250, 2006)), (ii) on the presupposition that changes in lake level are the dominant control on facies distribution in Lake Khubsugul, and (iii) on the invalidation of our age-depth model. In this reply to their comment, we demonstrate that they interpreted seismic artefacts and geometries caused by changes in profile orientation as true stratigraphic features and that the lake-level reconstruction they derive from this interpretation is therefore incorrect. We also demonstrate that their grain-size predictions, which they consider to be predominantly driven by changes in lake level, are inconsistent with the measured sulphate concentration, which is a demonstrated proxy of lake level in Lake Khubsugul, and with the measured grain-size record. Finally, we point out that even if there would be a problem with the age-depth model, this problem would not affect the part of the sedimentary sequence discussed in Fedotov et al. (J Paleolimnol 39:335–348, 2008).  相似文献   

2.
The post-glacial history of the Great Lakes has involved changes in lake levels that are equivalent in vertical extent to the Pleistocene changes in global sea level and changes in sediment accumulation by at least two orders of magnitude. In the sediments of the northern Lake Michigan basin, these radical changes in base level and sediment supply are preserved in detailed records of changing depositional environment and the impact of these changes on depositional architecture. The seismic sequences of the sediment fill previously described in Lake Huron have been carried into northern Lake Michigan and used to map the history and architecture of basinal deposition. As the Laurentide Ice Sheet retreated northward in the early Holocene, it opened progressively deeper channels to the east that allowed the larger lakes to drain through the North Channel, Huron, and Georgian Bay basins. At the end of the Main Algonquin highstand, about 10,200 (radiocarbon) yrs ago, the eastern drainage passage deepened in a series of steps that defined four seismic sequences and lowered lake levels by over 100 m. Near the same time a new source of sediment and meltwaters poured across the Upper Peninsula of Michigan and into the northern Lake Michigan basin from the Superior basin ice lobe. A marked increase in deposition is seen first in the northern part of the study area, and slightly later in the Whitefish Fan area at the southern end of the study area. Accumulation rates in the area gradually decreased even as lake levels continued to fall. Drainage directly from the Superior basin ended before the beginning of the main Mattawa phase about 9,200 (radiocarbon) yrs ago.Although individual lowstand systems tracts are at the most a few hundred yrs in duration, their geometries and seismic character are comparable to marine systems tracts associated with sea level falls of similar magnitudes. In some of the thicker lowstand deposits a second order cyclicity in sedimentation can be detected in the high resolution seismic records.  相似文献   

3.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   

4.
The analysis of sediment chemistry and biota in drill cores from Lake Khubsugul in Mongolia (KDP-01) and Lake Baikal in Siberia (BDP-96/1), two great Eurasian freshwater lakes, detected prominent climate and biological events at 460–420 and 670 kyrs BP in addition to the orbital cycles of precession, tilt and eccentricity. The revealed long-term events were associated with notable changes in biodiversity and geography/landscapes, mainly in water budgets and weathering patterns. The span between 460–420 and 670 kyrs BP was the time when the climate and geographic conditions differed from those before and after these events. The corresponding 33–24 m (670–460 kyr) interval of the Khubsugul core lacked the usual signature of the Milankovitch glacial/interglacial cycles. Events of approximately these ages were found in some other continental ecosystems and in oceanic δ13C records. The two events may mark the phases of a 300–500-kyr long supercycle (or megastadial) in the evolution of continental ecosystems. Among other causes (e.g., regional tectonic events), this periodicity, being globally correlated, may be associated with the 400-kyr cycle of the Earth’s orbital eccentricity.  相似文献   

5.
We have obtained a detailed paleoenvironmental record in the Summer Lake Basin, Oregon (northwestern Great Basin, US) spanning from 250ka-5 ka. This record is derived from core and outcrop sites extending from a proximal deltaic setting to near the modern depocenter. Lithostratigraphic, paleontologic (ostracodes and pollen) and geochemical indicators all provide evidence for hydroclimate and climate change over the study interval.Lithostratigraphic analysis of the Summer Lake deposits allows subdivision into a series of unconformity - or paraconformity-bound lithosomes. The unconformity and facies histories indicate that the lake underwent several major lake-level excursions through the Middle and Late Pleistocene. High stands occurred between ~200 and ~165 ka, between ~89 and 50 ka and between ~25 and 13 ka. Uppermost Pleistocene and Holocene sediments have been removed by deflation of the basin, with the exception of a thin veneer of late Holocene sediment. These high stands correspond closely with Marine Oxygen Isotope Stages 6, 4 and 2, within the margin of error associated with the Summer Lake age model. A major unconformity from ~158 ka until ~102 ka (duration varies between sites) interrupts the record at both core and outcrop sites.Lake level fluctuations, in turn are closely linked with TOC and salinity fluctuations, such that periods of lake high stands correlate with periods of relatively low productivity, fresher water and increased water inflow/evaporation ratios. Paleotemperature estimates based on palynology and geochemistry (Mg/Ca ratios in ostracodes) indicate an overall decrease in temperature from ~236 ka-165 ka, with a brief interlude of warming and drying immediately after this (prior to the major unconformity). This temperature decrease was superimposed on higher frequency variations in temperature that are not evident in the sediments deposited during the past 100 ka. Indicators disagree about temperatures immediately following the unconformity (~102-95 ka), but most suggest warmer temperatures between ~100-89 ka, followed by a rapid and dramatic cooling event. Cooler conditions persisted throughout most of the remainder of the Pleistocene at Summer Lake, with the possible exception of brief warm intervals about 27-23 ka. Paleotemperature estimates for the proximal deltaic site are more erratic than for more distal sites, indicative of short term air temperature excursions that are buffered in deeper water.Estimates of paleotemperature from Mg/Ca ratios are generally in good agreement with evidence from upland palynology. However, there is a significant discordance between the upland pollen record and lake indicators with respect to paleoprecipitation for some parts of the record. Several possibilities may explain this discordance. We favor a direct link between lake level and salinity fluctuations and climate change, but we also recognize the possibility that some of these hydroclimate changes in the Summer Lake record may have resulted from episodic drainage captures of the Chewaucan River between the Summer Lake and Lake Abert basins.  相似文献   

6.
Sponge spicules are siliceous microfossils that are especially useful for analysis of sandy fluvio-lacustrine sediments. Sponge spicules in a long sediment core (~550 cm below surface), consisting of fine sand, sandy silt, and organic-rich mud, recovered from the floodplain of the Nabileque River, southern Pantanal, Brazil (S20°16′38.3″/W57°33′00.0″), form the basis of a novel paleoenvironmental interpretation for this region. Optically stimulated luminescence dates constrain the timing of deposition to the middle-late Holocene and all spicules identified are typical of the Brazilian cerrado biome. The base of the section is dominated by Oncosclera navicella Carter 1881, Metania spinata Carter 1881, and Corvospongilla seckti Bonetto and Ezcurra de Drago 1966, which indicate a lotic to semi-lotic environment strongly influenced by an actively meandering river channel at ~6.7–5.7 ka BP. The appearance of Heterorotula fistula Volkmer-Ribeiro and Motta 1995, Dosilia pydanieli Volkmer-Ribeiro 1992 and Radiospongilla amazonensis Volkmer-Ribeiro and Maciel 1983 at ~340 cm downcore suggests a reduction in flowing water and a more stable lentic environment, consistent with deposition in an oxbow lake. This oxbow lake environment existed during an interval of regional aridity between ~4.5 and 3.9 ka BP. Spicules, as well as phytoliths and diatoms, are highly variable moving up-section, with species from both lotic and lentic ecosystems present. Above ~193 cm, the total abundance of spicules declines, consistent with wetter climate conditions and development of an underfit river similar to the modern floodplain. Results support hypotheses related to migration of the Paraguay River inferred from geomorphological studies and add a key southern-region dataset to the emerging Holocene database of paleoenvironmental records from the Pantanal wetlands.  相似文献   

7.
Sedimentary characteristics and genesis of a sandy, topset-dominated braided river delta from Huangqihai Lake were investigated using trenching and a ground penetrating radar survey. Ten lithofacies types were identified with assistance of grain size distribution to record a broad range of depositional processes within an overall coarsening upward sequence. Four distinct architectural elements, including channel fill, compound bar, sand sheet, and river mouth bar, built up this delta. No obvious foreset can be identified in this braided river delta. A gentle slope (0.2°) and shallow basin (<10 m deep), young age (~25 years), and low sediment supply caused by human disturbance and semi-arid climate, are believed to allow this type of topset-dominated delta to form.  相似文献   

8.
We use coupled numerical models (HydroTrend and SedFlux) to investigate the dispersal and accumulation of sediment on Poverty Shelf, North Island, New Zealand, during the past 3 kyr. In this timeframe, we estimate that the Waipaoa River system delivered ∼10 Gt of sediment to Poverty Shelf,  5–10% of which was transported to the outer shelf and continental slope. The domain of the two-dimensional model (SedFlux) is representative of a 30 km traverse across the shelf. Comparing the model output with seismic reflection data and a core obtained from the middle shelf shows that, without extensively modifying the governing equations or imposing unrealistic conditions on the model domain, it is possible to replicate the geometry, grain size and accumulation rate of the late Holocene mud deposit. The replicate depositional record responds to naturally and anthropogenically induced vegetation disturbance, as well as to storms forced by long-period climatic events simulated entirely within the model domain. The model output also suggests that long-term fluctuations in the amount and caliber of river sediment discharge, promoted by wholesale changes in the catchment environment, may be translated directly to the shelf depositional record, whereas short-term fluctuations conditioned by event magnitude and frequency are not. Thus on Poverty Shelf, as well as in depocenters on other active continental margins which retain a much smaller proportion of the terrigeneous sediment delivered to them, flood-generated event beds are not commonplace features in the high-resolution sedimentary record. This is because the shelf sedimentary record is influenced more by the energy available to the coastal ocean which helps keep the sediment in suspension and facilitates its dispersal, than by basin hydrometeorology which determines the turbidity and velocity of the river plume.  相似文献   

9.
Spatially variable sedimentation patterns are described for a small montane lake in southwestern British Columbia through the analysis of contemporary (20th century) varve sequences recovered from a high-density sediment coring program. Average, moderate, extreme, and localized depositional regimes, resolved at decadal to intra-annual scales, are differentiated for the Green Lake system from the stratigraphic record based on the volume and areal extent of the associated deposits. Average-regime sedimentation is mediated by the reliable annual freshet for the catchment. Moderate-regime events of the contemporary period (1930–2000) include periods of rapid glacial recession, extreme late-summer and autumn rainstorm-generated floods, and unusual snowmelt conditions. Only exceptional rainstorm events have led to extreme-regime sedimentation in the lake basin. Spatial sedimentation patterns are quantified by empirically derived surface models. Systematic differences are observed between both moderate and extreme sediment delivery events and the defined average-regime model. Substantial differences are observed between average and extreme regimes because of associated changes in sediment bypassing effects, intermediate sub-basin trapping, and sediment focusing mechanisms. Localized deposits coincide with isolated winter rainstorms in the region and anthropogenic disturbances along lake shorelines. Results indicate that the assumption of areal continuity in lacustrine sedimentation is not always appropriate for making comparisons between the identified depositional regimes. Sediment sampling programs that do not capture these spatially fluctuating sedimentation patterns may lead to biased accumulation chronologies and erroneous paleoenvironmental assessments of important hydroclimatic events.  相似文献   

10.
Two seismic facies were recognized in the sedimentary sequence overlying acoustic basement in Lake Winnipeg. The upper facies, which overlies a regional unconformity, is termed the Lake Winnipeg Sequence. Based on the seismostratigraphy, lithostratigraphy, and radiocarbon dates of approximately 4000 and 7000 yr BP from material collected directly over the unconformity in the southern and northern parts of the lake, respectively, this facies has been interpreted as representing Holocene sedimentation. Results of compositional and textural analyses of the Holocene sediment (Winnipeg sediment) from thirteen long (>2 m) cores indicate a transgressional sequence throughout the basin. In the South Basin, the generally fining upward sequence is characterized at the base by silt-sized detrital carbonate minerals, quartz and feldspar which decrease in concentration upward. In this basin, the high carbonate content and V/Al and Zn/Al ratios are indicative of a Paleozoic and Cretaceous provenance for sediment derived from glacial deposits through shoreline erosion and fluvial transport, via the Red River. Sedimentation in the central part of the lake and the North Basin is attributed to shoreline erosion of sand and gravel beaches. Consequently, the texture of these sediments is generally coarser than in the South Basin, and the composition primarily reflects a Paleozoic and Precambrian provenance. The basin-wide decrease in Ca, total carbonate minerals, dolomite and calcite concentrations upward in the cores is reflected by a decrease in the detrital carbonate component in all but the most northern cores. Other basin-wide trends show an upward increase in organic content in all cores. An increase in grain size near the top of most cores suggests a major, basin-wide change in sedimentation within the last, approximately 900 years in the South Basin.  相似文献   

11.
We use high-resolution reflection seismic data and detailed grain-size analysis of a drill core (KDP-01) from Lake Khubsugul (northern Mongolia) to provide an improved reconstruction of the glacial history of the area for the last 450 ka. Grain-size analysis of suspended sediment load in modern rivers draining into the lake and of moraine material from the northern part of the catchment shows that the silt fraction is transported to the central part of the lake mainly by river suspension, whereas the clay fraction is mainly transported by glacial meltwater during deglaciation. The changes in of the clay/silt ratio in Lake Khubsugul sediments correlates well with the standard global paleoclimate records: low clay/silt ratios indicate warm climates, while a high clay/silt ratio reflects glacial erosion and cold climates. Pulses of clay input into the lake occur at the final stages of glacial periods (i.e., glacial maxima and subsequent onsets of deglaciation). The periodicity in glacial clay input in Lake Khubsugul is in tune with global periods of deglaciation, but there are differences in the intensity of the deglacial events for MIS-12 and MIS-2. These differences are attributed to specific conditions in regional distribution of moisture during glaciation, glacial ice volumes, and solar insolation intensity at the onset of deglaciation. Deglaciation of the Khubsugul glaciers occurred in response to an increase in summer solar insolation above a threshold value of 490 W/m2. Two types of deglaciation can be distinguished: (1) slow melting during several tens of 1,000 years during weak increases in summer insolation, and (2) short and fast melting during several thousands of years in response to strong increases in summer insolation. The maximum ice volume in the area of Lake Khubsugul during the past 450 ka occurred during the period of 373–350 ka BP (MIS 11a-10) and was caused by high levels of moisture in the region, whereas the MIS-2 and MIS-12 glacial periods were characterized by minima in ice volume, due to the strong aridity in the region.  相似文献   

12.
An extensive seismic reflection profile survey conducted concurrently with a sediment coring program in northern Lake Huron, Georgian Bay, and the North Channel revealed a detailed Holocene lake level history. Seven acoustic sequences were identified in the seismic stratigraphy, and these sequences show great variation in both the character and the spatial distribution of sediment deposition through time. The depths to the acoustically-defined sequence boundaries were digitized from the analog seismic records and merged with Loran-C navigation records from the cruise, yielding a three-dimensional record of the location of each sequence boundary. Thicknesses of the sequences were calculated from these depths, and a minimum-curvature spline surface was fit to the thickness data. These surfaces were used to construct isopach maps which show the trends in thickness of sediment accumulation throughout the lake basins for each of the sequences. 14C-AMS dates of materials from the cores fixed the dates of the sediment sequence boundaries, allowing sediment accumulation rates to be calculated. The distribution of sedimentation in the basins as shown on the isopach maps allowed assessment of sediment transport and water flow through the basins over time, which when combined with the work of Lewis & Anderson (1989), provides a detailed record of the transport and drainage of water through these basins as the Wisconsinan ice sheet retreated and isostatic rebound opened and closed outlets. Reversals of flow direction through the Straits of Mackinac and through the channels connecting Lake Huron and Georgian Bay and the North Channel are indicated by changes in sediment thickness distributions.  相似文献   

13.
Frozen sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high resolution decadal to annual scale record of changing lake paleoenvironments and geochemistry that reflects changing landuse and hydrology in the catchment over the past c. 190 years. A reliable chronology is available from AMS 14C and 210Pb dating of the sediments, with the timing of the older part of the record supported by the first appearance of pollen of introduced Pinus and Plantago lanceolata associated with European settlement of Auckland in the early 1840s. Diatom stratigraphy, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions commensurate with European development of the Lake Pupuke catchment, in particular enhanced algal productivity controlled by the influx of nutrients after c. 1920 AD. Attempts to prevent nuisance algal blooms in 1933, 1934 and 1939 using CuSO4 addition produced Cu spikes in the sediment that allowed confirmation of the accuracy of the 210Pb chronology. Hence, the elemental and isotopic composition of the Lake Pupuke sediments reflect the timing of significant anthropogenic activities, rather than climatic variations, that have occurred within the watershed over the past c. 190 years. The comparison of records of land use change in the catchment with the multi-proxy record of changes in the sediments usually allowed unambiguous identification of the signatures of change and their causes.  相似文献   

14.
Sediment piston cores from Lake El’gygytgyn (67°N, 172°E), a 3.6 million year old meteorite impact crater in northeastern Siberia, have been analyzed to extract a multi-proxy millennial-scale climate record extending to nearly 250 ka, with distinct fluctuations in sedimentological, physical, biochemical, and paleoecological parameters. Five major themes emerge from this research. First the pilot cores and seismic data show that El’gygytygn Crater Lake contains what is expected to be the longest, most continuous terrestrial record of past climate change in the entire Arctic back to the time of impact. Second, processes operating in the El’gygytygn basin lead to changes in the limnogeology and the biogeochemistry that reflect robust changes in the regional climate and paleoecology over a large part of the western Arctic. Third, the magnetic susceptibility and other proxies record numerous rapid change events. The recovered lake sediment contains both the best-resolved record of the last interglacial and the longest terrestrial record of millennial scale climate change in the Arctic, yielding a high fidelity multi-proxy record extending nearly 150,000 years beyond what has been obtained from the Greenland Ice Sheet. Fourth, the potential for evaluating teleconnections under different mean climate states is high. Despite the heterogeneous nature of recent Arctic climate change, millennial scale climate events in the North Atlantic/Greenland region are recorded in the most distal regions of the Arctic under variable boundary conditions. Finally, deep drilling of the complete depositional record in Lake El’gygytgyn will offer new insights and, perhaps, surprises into the late Cenozoic evolution of Arctic climate. This is the first in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

15.
任黎秀  和艳  杨达源 《地理研究》2008,27(1):128-134
鄱阳湖湖滨及湖口-彭泽段长江南岸有成群沙垄、沙山分布。2005年调查发现,可分为4个风成沙山期及7类沉积物。4个风成沙山期分别为95kaB. P.的老红沙山期、46kaB. P.的红沙山期、27kaB. P.~15kaB. P.左右的黄沙山期、250年来的近代沙山期。此外还有温暖时期沟谷里水动力作用下的次生堆积,湖滩上的风蚀残余沙以及黄沙山表面现代松散沙。比较不同时期风沙沉积的粒度组成,4个时期的风力大小基本呈现黄沙山期>近代沙山期>红沙山期>老红沙山期的状态,以上特点与末次间冰期以来多个亚冰期全球气候寒冷程度的变化具有可比性。  相似文献   

16.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   

17.
We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.  相似文献   

18.
淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义   总被引:21,自引:5,他引:16  
以淮河中下游洪泽湖湖底沉积物为研究对象,将放射性核素计年与沉积物粒度分析、粒度平面分形研究以及历史文献资料相结合,初步探讨了洪泽湖湖底沉积物粒度特点及该区域近300年来的气候变化,为恢复百年尺度的气候干湿变化提供了一条新途径。研究发现,湖区气候的干湿变化大致可分为三个阶段。进一步说明沉积物粒度参数的变化不仅与自然环境改变有关,也与人类活动如黄河改道、湖泊周围建闸等关系密切。  相似文献   

19.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   

20.
Prior to the collection of a series of sediment cores, a high- and very-high-resolution reflection seismic survey was carried out on Lago Puyehue, Lake District, South-Central Chile. The data reveal a complex bathymetry and basin structure, with three sub-basins separated by bathymetric ridges, bedrock islands and interconnected channels. The sedimentary infill reaches a thickness of >200 m. It can be sub-divided into five seismic-stratigraphic units, which are interpreted as: moraine, ice-contact or outwash deposits (Unit I), glacio-lacustrine sediments rapidly deposited in a proglacial or subglacial lake at the onset of deglaciation (Unit II), lacustrine fan deposits fed by sediment-laden meltwater streams in a proglacial lake (Unit III), distal deposits of fluvially derived sediment in an open, post-glacial lake (Unit IV) and authigenic lacustrine sediments, predominantly of biogenic origin, that accumulated in an open, post-glacial lake (Unit V). This facies succession is very similar to that observed in other glacial lakes, and minor differences are attributed to an overall higher depositional energy and higher terrigenous input caused by the strong seismic and volcanic activity in the region combined with heavy precipitation. A long sediment core (PU-II core) penetrates part of Unit V and its base is dated as 17,915 cal. yr. BP. Extrapolation of average sedimentation rates yields an age of ca. 24,750 cal. yr. BP for the base of Unit V, and of ca. 28,000 cal. yr. BP for the base of Unit IV or for the onset of open-water conditions. This is in contrast with previous glacial-history reconstructions based on terrestrial records, which date the complete deglaciation of the basin as ca. 14,600 cal. yr. BP. This discrepancy cannot be easily explained and highlights the need for more lacustrine records from this region. This is the second in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号