首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New volcanological studies allow reconstruction of the eruption dynamics of the Pomici di Mercato eruption (ca 8,900 cal. yr B.P.) of Somma-Vesuvius. Three main Eruptive Phases are distinguished based on two distinct erosion surfaces that interrupt stratigraphic continuity of the deposits, indicating that time breaks occurred during the eruption. Absence of reworked volcaniclastic deposits on top of the erosion surfaces suggests that quiescent periods between eruptive phases were short perhaps lasting only days to weeks. Each of the Eruptive Phases was characterised by deposition of alternating fall and pyroclastic density current (PDC) deposits. The fallout deposits blanketed a wide area toward the east, while the more restricted PDC deposits inundated the volcano slopes. Eruptive dynamics were driven by brittle magmatic fragmentation of a phonolitic magma, which, because of its mechanical fragility, produced a significant amount of fine ash. External water did not significantly contribute either to fragmentation dynamics or to mechanical energy release during the eruption. Column heights were between 18 and 22 km, corresponding to mass discharge rates between 1.4 and 6 × 107 kg s−1. The estimated on land volume of fall deposits ranges from a minimum of 2.3 km3 to a maximum of 7.4 km3. Calculation of physical parameters of the dilute pyroclastic density currents indicates speeds of a few tens of m s−1 and densities of a few kg m−3 (average of the lowermost 10 m of the currents), resulting in dynamic pressures lower than 3 kPa. These data suggest that the potential impact of pyroclastic density currents of the Pomici di Mercato eruption was smaller than those of other Plinian and sub-Plinian eruptions of Somma-Vesuvius, especially those of 1631 AD and 472 AD (4–14 kPa), which represent reference values for the Vesuvian emergency plan. The pulsating and long-lasting behaviour of the Pomici di Mercato eruption is unique in the history of large explosive eruptions of Somma-Vesuvius. We suggest an eruptive scheme in which discrete magma batches rose from the magma chamber through a network of fractures. The injection and rise of the different magma batches was controlled by the interplay between magma chamber overpressure and local stress. The intermittent discharge of magma during a large explosive eruption is unusual for Somma-Vesuvius, as well as for other volcanoes worldwide, and yields new insights for improving our knowledge of the dynamics of explosive eruptions.  相似文献   

2.
Forward-Looking Infrared (FLIR) nighttime thermal images were used to extract the thermal and morphological properties for the surface of a blocky-to-rubbley lava mass active within the summit crater of the Caliente vent at Santiaguito lava dome (Guatemala). Thermally the crater was characterized by three concentric regions: a hot outer annulus of loose fine material at 150–400°C, an inner cold annulus of blocky lava at 40–80°C, and a warm central core at 100–200°C comprising younger, hotter lava. Intermittent explosions resulted in thermal renewal of some surfaces, mostly across the outer annulus where loose, fine, fill material was ejected to expose hotter, underlying, material. Surface heat flux densities (radiative + free convection) were dominated by losses from the outer annulus (0.3–1.5 × 104  s−1m−2), followed by the hot central core (0.1–0.4 × 104 J s−1m−2) and cold annulus (0.04–0.1 × 104 J s−1m−2). Overall surface power output was also dominated by the outer annulus region (31–176 MJ s−1), but the cold annulus contributed equal power (2.41–7.07 MJ s−1) as the hot central core (2.68–6.92 MJ s−1) due to its greater area. Cooled surfaces (i.e. the upper thermal boundary layer separating surface temperatures from underlying material at magmatic temperatures) across the central core and cold annulus had estimated thicknesses, based on simple conductive model, of 0.3–2.2 and 1.5–4.3 m. The stability of the thermal structure through time and between explosions indicates that it is linked to a deeper structural control likely comprising a central massive plug, feeding lava flow from the SW rim of the crater, surrounded by an arcuate, marginal fracture zone through which heat and mass can preferentially flow.  相似文献   

3.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

4.
The ocean takes up approximately 2 GT carbon per year due to the enhanced CO2 concentrations in the atmosphere. Several options have been suggested in order to reduce the emissions of CO2 into the atmosphere, and among these are CO2 storage in the deep ocean. Topographic effects of dissolution and transport from a CO2 lake located at 3,000-m depth have been studied using the z-coordinate model Massachusetts Institute of Technology general circulation model (MITgcm) and the σ-coordinate model Bergen ocean model (BOM). Both models have been coupled with the general ocean turbulence model (GOTM) in order to account for vertical subgrid processes. The chosen vertical turbulence mixing scheme includes the damping effect from stable stratification on the turbulence intensity. Three different topographic scenarios are presented: a flat bottom and the CO2 lake placed within a trench with depths of 10 and 20 m. The flat case scenario gives good correlation with previous numerical studies of dissolution from a CO2 lake. When topography is introduced, it is shown that the z-coordinate model and the σ-coordinate model give different circulation patterns in the trench. This leads to different dissolution rates, 0.1 μmol cm − 2 s − 1 for the scenario of a 20-m-deep trench using BOM and 0.005–0.02 μmol cm − 2 s − 1 for the same scenario using the MITgcm. The study is also relevant for leakages of CO2 stored in geological formations and to the ocean.  相似文献   

5.
Vertical ash plumes were imaged at Santiaguito (Guatemala) using a thermal camera to capture plume ascent dynamics. The plumes comprised a convecting plume front fed by a steady feeder plume. Of the 25 plumes imaged, 24 had a gas thrust region within which ascent velocities were 15–50 m s−1. A transition to buoyant ascent occurred 20 to 50 m above the vent, where ascent velocities declined to 4–15 m s−1. Plumes that attained greater heights had higher heat contents, wider feeder plumes and higher buoyant ascent velocities.  相似文献   

6.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   

7.
During 2007–2008, three CO2 flux surveys were performed on El Chichón volcanic lake, Chiapas, Mexico, with an additional survey in April 2008 covering the entire crater floor (including the lake). The mean CO2 flux calculated by sequential Gaussian simulation from the lake was 1,190 (March 2007), 730 (December 2007) and 1,134 g m−2 day−1 (April 2008) with total emission rates of 164 ± 9.5 (March 2007), 59 ± 2.5 (December 2007) and 109 ± 6.6 t day−1 (April 2008). The mean CO2 flux estimated from the entire crater floor area was 1,102 g m−2 day−1 for April 2008 with a total emission rate of 144 ± 5.9 t day−1. Significant change in CO2 flux was not detected during the period of survey, and the mapping of the CO2 flux highlighted lineaments reflecting the main local and regional tectonic patterns. The 3He/4He ratio (as high as 8.1 R A) for gases in the El Chichón crater is generally higher than those observed at the neighbouring Transmexican Volcanic Belt and the Central American Volcanic Arc. The CO2/3He ratios for the high 3He/4He gases tend to have the MORB-like values (1.41 × 109), and the CO2/3He ratios for the lower 3He/4He gases fall within the range for the arc-type gases. The high 3He/4He ratios, the MORB-like CO2/3He ratios for the high 3He/4He gases and high proportion of MORB-CO2 (M = 25 ±15%) at El Chichón indicate a greater depth for the generation of magma when compared to typical arc volcanoes.  相似文献   

8.
The ~4-ka trachytic Rungwe Pumice (RP) deposit from Rungwe Volcano in South-Western Tanzania is the first Plinian-style deposit from an African volcano to be closely documented focusing on its physical characterization. The RP is a mostly massive fall deposit with an inversely graded base. Empirical models suggest a maximum eruption column height H T of 30.5–35 km with an associated peak mass discharge rate of 2.8–4.8 × 108 kg/s. Analytical calculations result in H T values of 33 ± 4 km (inversion of TEPHRA2 model on grain size data) corresponding to mass discharge ranging from 2.3 to 6.0 × 108 kg/s. Lake-core data allow extrapolation of the deposit thinning trend far beyond onland exposures. Empirical fitting of thickness data yields volume estimates between 3.2 and 5.8 km3 (corresponding to an erupted mass of 1.1–2.0 × 1012 kg), whereas analytical derivation yields an erupted mass of 1.1 × 1012 kg (inversion of TEPHRA2 model). Modelling and dispersal maps are consistent with nearly no-wind conditions during the eruption. The plume corner is estimated to have been ca. 11–12 km from the vent. After an opening phase with gradually increasing intensity, a high discharge rate was maintained throughout the eruption, without fountain collapse as is evidenced by a lack of pyroclastic density current deposits.  相似文献   

9.
We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel–levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ∼2 m deep and ∼11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ∼10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ∼2 m with an effusion rate of ∼35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ∼10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.  相似文献   

10.
We present thermal measurements made by high spatial resolution ground-based (a hand-held thermal camera) and low spatial resolution space-based (MODIS) instruments for a lava flow field active during the last phase of the May–July 2003 eruption at Piton de la Fournaise (La Réunion). Multiple oblique ground-based thermal images were merged to provide full coverage of the flow-field. These were then corrected for path length attenuation and orthorectified, allowing the at-surface radiance emitted by the flow-field to be estimated. Comparison with the radiance recorded by the MODIS sensors during the eruption reveals that, for clear-sky conditions and moderate-to-low viewing angles (satellite zenith <40°), the satellite measurements represent ∼90% of the at-surface radiance, and thus represent valuable data for quantifying volcanic thermal anomalies. Nevertheless, extreme viewing geometries and the presence of clouds strongly affect the radiance reaching the sensor and affected data from 94% of the overpasses. Ground-based thermal data were used to investigate an empirical relationship between the radiant heat flux and lava discharge rate during the emplacement of pahoehoe flows. While the average radiation temperature for flow surface that were 6–24 h old ranged between 500 K and 625 K, the ratio between radiative heat flux and Time-Averaged lava Discharge Rate (TADR) ranged between 1.5 × 108 J m−3 and 3.5 × 108 J m−3. This relationship was used to estimate TADR values from optimal MODIS data and produced results in line with those obtained from GPS surveys (Coppola et al. 2005). Our results underscore the importance of ground-based thermal analysis for the interpretation of satellite measurements, particularly in terms of calculating discharge rate trends.  相似文献   

11.
 Two methods were used to quantify the flux of volcanic sulphur (as the equivalent mass of SO2) to the stratosphere over different timescales during the Holocene. A combination of satellite-based measurements of sulphur yields from recent explosive volcanic eruptions with an appropriate rate of explosive volcanism for the past 200 years constrains the medium-term (∼102 years) flux of volcanic sulphur to the stratosphere to be ∼1 Mt a–1, with lower and upper bounds of 0.3 and 3 Mt a–1. The short-term (∼10- to 20-year) flux due to small magnitude (1010–1012 kg) eruptions is of the order of 0.4 Mt a–1. At any time the instantaneous levels of sulphur in the stratosphere are dominated by the most recent (0–3 years) volcanic events. The flux calculations do not attempt to address this very short timescale variability. Although there are significant errors associated with the raw sulphur emission data on which this analysis is based, the approach presented is general and may be readily modified as the quantity and quality of the data improve. Data from a Greenland ice core support these conclusions. Integration of the sulphate signals from presumed volcanic sources recorded in the GISP2 core provides a minimum estimate of the 103–year volcanic SO2 flux to the stratosphere of 0.5–1 Mt a–1 over the past 9000 years. The short-term flux calculations do not account for the impact of rare, large events. The ice-core record does not fully account for the contribution from small, frequent events. Received: 27 September 1995 / Accepted: 13 December 1995  相似文献   

12.
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of − 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = − 0.4, when compared to the regional networks operating in West Bohemia (M c > 0.0). In the course of this work, the main temporal features (frequency–magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg–Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.  相似文献   

13.
Attenuation of coda waves in the Northeastern Region of India   总被引:1,自引:0,他引:1  
Coda wave attenuation quality factor Qc is estimated in the northeastern region of India using 45 local earthquakes recorded by regional seismic network. The quality factor Qc was estimated using the single backscattering model modified by Sato (J Phys Earth 25:27–41, 1977), in the frequency range 1–18 Hz. The attenuation and frequency dependence for different paths and the correlation of the results with geotectonics of the region are described in this paper. A total of 3,890 Qc measurements covering 187 varying paths are made for different lapse time window of 20, 30, 40, 50, 60, 70, 80, and 90 s in coda wave. The magnitudes of the analyzed events range from 1.2 to 3.9 and focal depths range between 7 and 38 km. The source–receiver distances of the selected events range between 16 and 270 km. For 30-s duration, the mean values of the estimated Qc vary from 50 ± 12 (at 1 Hz) to 2,078 ± 211(at 18 Hz) for the Arunachal Himalaya, 49 ± 14 (at 1 Hz) to 2,466 ± 197 (at 18 Hz) for the Indo-Burman, and 45 ± 13 (at 1 Hz) to 2,069 ± 198 (at 18 Hz) for Shillong group of earthquakes. It is observed that Qc increases with frequency portraying an average attenuation relation for the region. Moreover, the pattern of Qc − 1 with frequency is analogous to the estimates obtained in other tectonic areas in the world, except with the observation that the Qc − 1 is much higher at 1 Hz for the northeastern region. The Qc − 1 is about 10 − 1.8 at 1 Hz and decreases to about 10 − 3.6 at 18 Hz indicating clear frequency dependence. Pertaining to the spatial distribution of Qc values, Mikir Hills and western part of Shillong Plateau are characterized by lower attenuation.  相似文献   

14.
Relative ‘echo intensity’ data (dI) from a bottom-mounted four-beam 300 kHz acoustic Doppler current profiler (ADCP) are used to infer propagation of vigorous processes above a continental slope. The 3- to 60-m horizontal beam spread and the 2-Hz sampling allow the distinction of different arrival times t i , i = 1,..., 4, at different distances in the acoustic beams from sharp changes in dI-content associated with frontal non-linear and turbulent bores or ‘waves’. The changes in dI are partially due to variations in amounts of resuspended material carried by the near-bottom turbulence and partially due to the fast variations in density stratification (‘stratified turbulence’), as inferred from 1-Hz sampled thermistor string data above the ADCP. Such bores are observed to pass the mooring up to 80 m above the bottom, having typical propagation speeds c = 0.15–0.5 m s−1, as determined from dI(t i ). Particle speeds in the immediate environment of a bore amount to |u|env=c ± 0.05 m s−1, the equality being a necessary condition for kinematic instability, whilst the maximum particle speeds amount |u|max = 1.2–2c. The dI-determined directions of up-, down- and alongslope processes are all to within ±10° of the ADCP’s beam-spread averaged current (particle velocity) data.  相似文献   

15.
Imaging short period variations in lava flux   总被引:2,自引:1,他引:1  
Short period (e.g. <1 h) variations in lava effusion rate have been detected previously on Mount Etna, Sicily, but the causes and effects of such changes are poorly understood because of difficulties in obtaining suitably high frequency measurements over long periods. Here, we report short period flux variations in active lava flows, recorded in dense time series imagery over a 7-night period using modified remote trail cameras. The sequences of night-time images show significant pulses of enhanced incandescence, interpreted as short period increases in lava flux, travelling down-channel at velocities of ∼10–20 m min−1. Pulse generation decreased from an average of one pulse per hour on the first night to approximately one per night within a few nights. Effusion rate changes on these timescales are considered to reflect instabilities in magma ascent and, consequently, could provide insight into subsurface flow processes.  相似文献   

16.
Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (>15 m s−1) while Type 2b plumes were limited to buoyant velocities (<15 m s−1) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1, with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1 = 34 m s−1, Type 2a = 31 m s−1, Type 2b = 7 m s−1. Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.  相似文献   

17.
Sub-Plinian to Plinian eruptions of basic magma present a challenge to modeling volcanic behavior because many models rely on magma becoming viscous enough during ascent to behave brittlely and cause fragmentation. Such models are unable, however, to strain low viscosity magma fast enough for it to behave brittlely. That assumes that such magmas actually have low viscosities, but the rare Plinian eruptions of basic magma may in fact result from them being anomalously viscous. Here, we examine two such eruptions, the 122 B.C. eruption of hawaiitic basalt from Mt. Etna and the late Pleistocene eruption of basaltic andesite from Masaya Caldera, to test whether they were anomalously viscous. We carried out hydrothermal experiments on both magmas and analyzed glass inclusions in plagioclase phenocrysts from each to determine their most likely pre-eruptive temperatures and water contents. We find that the hawaiite was last stored at 1,000–1,020°C, whereas the basaltic andesite was last stored at 1,010–1,060°C, and that both were water saturated with ∼3.0 wt.% water dissolved in them. Such water contents are not high enough to trigger Plinian explosive behavior, as much more hydrous basic magmas erupt less violently. In addition, despite being relatively cool, the viscosities of both magmas would range from ∼102.2–2.5 Pa s before erupting to ∼104 Pa s when essentially degassed, all of which are too fluid to cause brittle disruption. Without invoking special external forces to explain all such eruptions, one of the more plausible explanations is that when the bubble content reaches some critical value the fragile foam-like magma disrupts. The rarity of Plinian eruptions of basic magma may be because such magmas must ascend fast enough to retain their bubbles.  相似文献   

18.
In June/July 2000, a hydraulic stimulation experiment took place at the geothermal EGS site of Soultz-sous-Forêts (Alsace, France) in order to enhance the permeability of the fractured granitic massif at 5 km depth. As it is well known that fluid injections tend to induce microseismic events, a downhole and a surface seismological network have been installed to monitor the seismic activity during the stimulation test. 23400 m3 of fluid have been injected in the rock volume through the open-hole section (4400 m–5000 m) of the well GPK2 at increasing rates of 30 l.s−1, 40 l.s−1 and then 50 l.s−1. More than 7200 microseismic events in the magnitude range –0.9 to 2.6 have been precisely located through a simultaneous inversion of the seismic velocity structure and location parameters. The analysis of the behavior of the seismicity relative to the hydraulic parameters gives important information about the geothermal reservoir. It appears that the evolution of the seismicity strongly depends on the variations of the injection rate: An increase or a decrease leads to changes of the velocity structure, the number and magnitude of microseismic events. This involves different hydro-mechanical processes between the fluid flow and the fracture planes, which will control the final shape of the microseismic cloud. Moreover, the study of the variations of the b-value with time suggests that the stimulation experiment produces a large proportion of small earthquakes, but records of events of magnitude higher than 2 indicate that fluid injection could reactivate structures whose dimensions allow the generation of such earthquakes.  相似文献   

19.
Maar volcanoes represent a common volcano type which is produced by the explosive interaction of magma with external water. Here, we provide information on a number of maars in the ultrapotassic Sabatini Volcanic District (SVD, Roman Province) as young as ∼90 ka. The SVD maars are characterised in terms of crater and ejecta ring morphologies, eruptive successions and magma compositions, in light of the local substrate settings, with the aim of assessing magma–water interaction conditions, eruption energetics and genetic mechanisms. Feeder magmas spanned the whole SVD differentiation trend from trachybasalts–shoshonites to phonolites. From the ejected lithic fragments from aquifer rocks, the range of depth of magma–water explosive interaction is estimated to have been mostly at ∼400–600 m below ground level, with a single occurrence of surficial interaction in palustrine–lacustrine environment. In particular, the interaction with external water may have triggered the explosive behaviour of poorly differentiated magmas, whereas it may have acted only as a late controlling factor of the degree of fragmentation and eruption style for the most differentiated magma batches during low-flux ascent in an incipiently fragmented state. Crater sizes, ejecta volumes and ballistic data allow a reconstruction of the energy budget of SVD maar-forming eruptions. Erupted tephra volumes from either monogenetic or polygenetic maars ranged 0.004–0.07 km3 during individual maar-forming eruptions, with corresponding total magma thermal energies of 8 × 1015–4 × 1017 J. Based on energy partitioning and volume balance of erupted magmas and lithic fractions vs. crater holes, we consider the different contributions of explosive excavation of the substrate vs. subsidence in forming the SVD maar craters. Following available models based on crater sizes, highly variable fractions (5–50%) of the magma thermal energies would have been required for crater excavation. It appears that subsidence may have played a major role in some SVD maars characterised by low lithic contents, whilst substrate excavation became increasingly significant with increasing degrees of aquifer fragmentation.  相似文献   

20.
The results of biogeochemical and microbiological studies of three small lakes in southwestern Arkhangelsk province are presented. The lakes differ in their morphometric characteristics, thermal and oxygen regimes, and the extent of anthropogenic impact they experience. In the periods of summer and winter stratification, anaerobic water layers with higher phosphates, ammonium, and sulfide sulfur (hydrogen sulfide) are found to form in the bottom horizon of deep-water zones of the lakes. The highest concentrations of sulfide sulfur (150–210 μg dm−3) were recorded in the shallow Beloe Lake during winter low-water period, while in summer, sulfide concentration did not differ from those obtained in other lakes (∼10 μg dm−3). The abundance of sulfate-reducing bacteria in lake bottom sediments varied from 10 to 100000 cell cm−3, and the rate of sulfate reduction process varied from 29 to 3746 μg S dm−3 day−1. Seasonal variations were revealed in hydrogen sulfide distribution over the water column and in the rate of sulfate reduction process in the upper horizons of bottom sediments in the examined lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号