首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope’s u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3–0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.  相似文献   

2.
The paper contains a model synthesizing the light curves of novae and novae-like stars, as well as of active close binaries (CB) in the phase of an intensive matter exchange between the components with accretion onto a white dwarf. The model considers the radial and azimuthal temperature distributions in the disk enabling a successful interpretation of asymmetrically deformed light curves characteristic for these systems. The analysis of the observed light curves is performed by using the inverse-problem method (Djuraevi, 1992b) adapted to this model. In the particular case the parameters for the dwarf-novaOY Car are estimated on the basis of the U and B observations (Woodet al., 1989).The synthetic light curves obtained through the inverse-problem solving, as a whole, fit the observations well which indicates that it is possible to estimate the system parameters on the basis of the model proposed here.The obtained results indicate a complex hot-spot structure approximated in the model with two components—a central part and a surrounding spot larger in size. The central hot-spot part (temperature about 10000 K is surrounded asymmetrically by the larger spot lower in temperature (about 7000 K). The radiation of the central hot spot is beamed forward by about 20°. The angular size of the hot-spot central part is about 5°, the centre longitude is 322°, whereas for the surrounding spot the size is about 33° and the longitude of the centre about 300°.For the mass ratio of the componentsq=0.102 one finds for the orbit inclination about 83°.8. The analysis shows that the disk radius is about 51% of the corresponding Roche lobe radius.Based on the U and B light curves the quiescent disk-edge temperature is estimated to about 5500 K (U), i.e. 4400 K (B). The disk-radial-temperature profile is much flatter than in the steady-state-approximation case. Beginning from the edge towards the disk centre the temperature slowly increases attaining about 7200 K (U), i.e. 5700 K (B) near the white dwarf. The differences in the solutions for the U and B light curves can be due to deviations in the disk radiation from the black-body approximation assumed in the present model. Expressed in the units of the distance between the component centres [D=1] the disk size is estimated to about 0.304 [D=1], its thickness to 0.014 [D=1], and the white-dwarf radius to about 0.02 [D=1]. The white-dwarf temperature is about 15000 K.The obtained results are in a relatively good agreement with the system parameters estimated earlier (Woodet al., 1989). This indicates that the proposed model of the system and the corresponding inverse-problem method briefly presented here are fully applicable to the analysis of active CB light curves in this evolutionary phase. Though the model given here includes a number of approximations, it enables an independent procedure in the observational-material analysis based on the light-curve synthesis and on the application of the inverse-problem method. Results obtained by applying such an independent method can also serve as a reasonable way in testing the solutions obtained by utilising the earlier approaches.  相似文献   

3.
The upwelling radiation at the top of the atmosphere is computed over a circular lake which is located in the uniform Lambert surface, using a modified version of the doubling-adding method. The radiance over the lake is discussed with respect to the atmospheric effect. The radius of the lake is assumed to be 0.5, 1, and 3 km. The observational site is located at altitude 30 km. The zenith of the observational site is located in the plane which is determined by the zenith of the center of the lake and incident solar direction. The zenith angle of the observational site to the center of the lake is fixed to 6.28°. The atmosphere is assumed to be homogeneous, which is composed of aerosol and molecule, where the model aerosol is of the oceanic or the water soluble types.Numerical simulation exhibits an extraordinary effect near the lake. The radiance of the lake against the surrounding depends upon the albedo of the surrounding surface. It increases with the increase of the size of the lake and decreases with the optical thickness. At large optical depth, the radiance depends upon the aerosol characteristics. It shows little dependence on the solar zenith angle if less than 60°.  相似文献   

4.
A digital file of the lunar normal Albedo   总被引:2,自引:0,他引:2  
A digital file of the normal albedo of the Moon has been produced at a resolution of about 1/550 of a lunar diameter (about 6.3 km). The file was produced from five photographs taken with the 61-cm reflector of the Northern Arizona University Astrophysical Observatory. No mosaicking was necessary. Spatial control is selenodetic rather than landmark-morphologic. Photometric control is provided through a combination of electrography and regular photoelectric photometry. Pixel photometric function corrections are employed. The file was provided as data base for the Lunar Consortium. Brief discussion of the scientific implications of the frequency histogram is offered, and the negligibility of lunar limb darkening below = 77° is affirmed. It is specifically desired not to withhold these data from publication while more significant and detailed scientific interpretation is carried on.  相似文献   

5.
Examples of pure lunar mountains, dark and light maria, and cratered terrae have been observed with the UBVRI stellar photometry system. Johnson's (1965) absolute calibration was used to compute brightnesses. These brightnesses were reduced using Hapke's photometric model to a standard geometry (angle of incidence 60°, emergence 40°, phase 90°), and relative albedos were then computed.The mountains, as distinct from the other regions, appear to require a wavelength dependent phase function. The albedos for the four topographic types are approximately linear functions of wavelength. The terrae are redder than the maria. Very low contrast between the topographies is predicted for full-moon at wavelengths shorter than 0.30. On the basis of laboratory studies, the lunar particles are comparable to basalt grains having sizes less than 50m. Larger particle sizes are associated with the dark maria and smaller ones with the cratered highlands.  相似文献   

6.
Because of the influence of atmospheric refraction the astronomical observations of the objects with the angles of elevation below 15° are generally avoided, but for the sake of the complete theoretical research the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. Especially for some engineering applications the objects with low angles of elevation must be observed sometimes. A new idea for determining atmospheric refraction by utilizing the differential method is proposed. A series of observations of the starry sky at different heights are carried out and by starting from the zenith with a telescope with larger field of view, the derivatives of various orders of atmospheric refraction function at different zenith distances are calculated and finally the actually observed values of atmospheric refraction can be found via numerical integration. The method does not depend upon the strict local parameters and complex precise observational instrumentation, and the observational principle is relatively simple. By the end of 2007 a simply constructed telescope with a larger field of view at Xinglong Observing Station was employed to carry out trial observations. The values of atmospheric refraction at the true zenith distances of 44.8° to 87.5° were obtained from the practical observations based on the differential method, and the feasibility of the method of differential measurement of atmospheric refraction was preliminarily justified. Being limited by the observational conditions, the accuracy of the observed result was limited, the maximal accidental error was about 6” and there existed certain systematic errors. The value of the difference between the result obtained at the zenith distance of 84° and that given in the Pulkovo atmospheric refraction table was about 15”. How to eliminate the cumulative error introduced due to the integration model error is the key problem which needs to be solved in future.  相似文献   

7.
A detailed examination of the location and orientation of sand dunes and other aeolian features within the north polar chasmata indicates that steep scarps strongly influence the direction and intensity of prevailing winds. These steep scarps are present at the heads and along the margins of the north polar chasmata. Topographic profiles of the arcuate head scarps and equator-facing wall of Chasma Boreale reveal unusually steep polar slopes ranging from ∼6°-30°. The relatively steep-sloped (∼8°), sinuous scarp at the head of two smaller chasmata, located west of Chasma Boreale, exhibits an obvious resistant cap-forming unit. Scarp retreat is occurring in places where the cap unit is actively being undercut by descending slope winds. Low-albedo surfaces lacking sand dunes or dust mantles are present at the base of the polar scarps. A ∼100-300 m deep moat, located at the base of the scarps, corresponds with these surfaces and indicates an area of active aeolian scour from descending katabatic winds. Small local dust storms observed along the equator-facing wall of Chasma Boreale imply that slope wind velocities in Chasma Boreale are sufficient to mobilize dust and sand-sized particles in the Polar Layered Deposits (PLD). Two amphitheater forms, located above the cap-forming unit of the sinuous scarp and west of Chasma Boreale, may represent an early stage of polar scarp and chasma formation. These two forms are developing within a younger section of polar layered materials. The unusually steep scarps associated with the polar chasmata have developed where resistant layers are present in the PLD, offering resistance during the headward erosion and poleward retreat of the scarps. Steep slopes that formed under these circumstances enhance the flow of down-scarp katabatic winds. On the basis of these observations, we reject the fluvial outflood hypothesis for the origin of the north polar chasmata and embrace a wind erosion model for their long-term development. In the aeolian model, off-pole katabatic winds progressively remove materials from the steep slopes below chasmata scarps, undermining resistant layers at the tops of scarps and causing retreat by headward erosion. Assuming a minimum age for the onset of formation of Chasma Boreale (105 yr) results in a maximum volumetric erosion rate of . Removal of this volume of material from the equator-facing wall and head scarps of chasma would require a rate for scarp retreat of .  相似文献   

8.
A 2-month series of quasi-simultaneous imaging photometric observations of the Moon and the Sun has been performed at Maidanak Observatory (Uzbekistan). New absolute values of lunar albedo have been obtained. Maps of lunar apparent albedo and equigonal albedo at phase angles 1.7-73° at wavelength 603 nm are presented. The standard deviation of our data from a best-fitted phase curve is 2%. The average ratio of the Clementine albedo to ours is 1.41. While the ratio of ROLO albedo to ours is 0.87, our data are in agreement with independent measurements of absolute albedo by Saiki et al. (Saiki, K., Saito, K., Okuno, H., Suzuki, A., Yamanoi, Y., Hirata N., Nakamura, R. [2008]. Earth Planets Space 60, 417-424) at a phase angle near 7°. A phase ratio imaging near opposition (1.6°/2.7°) shows almost the same ratio for maria and highlands, though bright craters (e.g., Tycho, Copernicus, Aristarchus) clearly reveal smaller slopes of phase function. This is an unexpected result, as the craters are bright and one could anticipate a manifestation of the coherent backscattering effect resulting in the opposition spike increasing at so small phase angles.  相似文献   

9.
The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970–2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon’s extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is \(-25.90 {{}^{\prime \prime }}/\mathrm{cy}^2\), and the eccentricity is increasing by \(1.48\times 10^{-11}\) each year.  相似文献   

10.
We report on observations of the full Moon brightness temperature covering the frequency range of 300-950 GHz, and also on observations of the lunar eclipse of July 16, 2000, though only covering the frequency range of 165-365 GHz due to poor atmospheric transmission at higher frequencies. All observations were performed from the summit of Mauna Kea (HI) using a Fourier Transform Spectrometer mounted on the Caltech Submillimeter Observatory and supplemented by measurements of the atmospheric opacity using a 183 GHz Water Vapor Monitor. The telescope was pointed to the center of the lunar disk (with a footprint of ∼45-15 km on the Moon at 300 through 900 GHz). In order to obtain the correct values of the Moon brightness temperatures at all frequencies we carefully corrected for the atmospheric absorption, which varies across the submillimeter domain. This correction is fully described. The measured pre-eclipse brightness temperature is around 337 K in the 165-365 GHz range. This temperature slightly increases with frequency to reach ∼353 K at 950 GHz, according to previous broader band data. The magnitude of the temperature drop observed during the eclipse at 265 GHz (central frequency of the band covered) was about ∼70 K, in very good agreement with previous millimeter-wave measurements of other lunar eclipses. We detected, in addition, a clear frequency trend in the temperature drop that has been compared to a thermal and microwave emission model of the lunar regolith, with the result of a good match of the relative flux drop at different frequencies between model and measurements.  相似文献   

11.
Since 1968 an assiduous program of photoelectric observation of occultations of stars by the Moon has been pursued at McDonald Observatory. A total of about 600 events has been observed of which 254 have been published and a second list is in preparation. Timings derived from the reductions have errors of the order of 1 ms corresponding to a positional uncertainty in the lunar limb of typically 80 cm. Results are routinely communicated to the ephemerides offices.In about 140 events the fringe pattern due to diffraction by the lunar limb is sufficiently well defined to permit a determination of the slope near the point of occultation. A statistical discussion of these data is given. In all except a few cases, the slopes are numerically less than 15°, though 7 cases with slopes between 30° and 40° have been found. The relations between numbers of observations and contact angle, and between errors of slope determination and contact angle are discussed. The distribution of slope data with contact angle seems adequately explained. When slope data are collected by position angle consistently large and consistently small values show a tendency to group in a pattern suggesting a connection with observed large scale features on the lunar limb.The influence of lunar limb irregularities of a scale of a few meters on observed diffraction patterns and inferred timings is discussed. Multichannel observations should be of value in removing ambiguities. The use of occultation observations for the discovery of multiple stars and for the measurement of angular diameters of stars is mentioned. Future developments proposed for the project are considered.The project has involved contributions by a considerable number of individuals from the staff and student body at Austin, Texas, from the staff at McDonald Observatory, from visiting scientists and from the Laser Ranging Group. These contributions are acknowledged in the paper. The work has been supported by NSF Grants GP-21204 and GP-32263X.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

12.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   

13.
The center of each western and eastern pillar head of the Tokyo PMC accommodates an axis collimator. Each axis collimator has a target of multi-slits system and two photodiode arrays to read the position of an autocollimated image of the target. In all celestial observations and measurements of instrumental constants, regular and irregular changes of the direction of the rotation axis of the Tokyo PMC are measured in real time with the axis collimators. The accuracy of the measurements is about 0.02 under 30 sec integration. The measured real-time changes are used to evaluate instantaneous level and azimuth of the instrument as a function of both time and zenith distance. The present scheme of real-time correction of the pivot irregularities was applied in the compilation of the Tokyo PMC Catalog 85.  相似文献   

14.
The structure of the outer part of the Galaxy is studied, based upon 21-cm line observations of Hi in the region 288°l310°, –7°b2°.In this longitude range the galactic plane is strongly bend toward negative latitudes.The principal outer structure is a spiral arm which has a pitch angle of 10° and is formed by several concentrations differing in shape and size. There exists also a secondary concentration which could be a split from the previous structure.Possible hypotheses about the origin of the later feature are discussed.  相似文献   

15.
The principal polar-crown coronal helmet structures were selected from nearly three years (May, 1965–January, 1968) of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii. Six isolated and long-lived helmet systems were found at latitudes of 45° and above. Their developments are compared with underlying chromospheric and photospheric activity and a simple phenomenological model is presented showing that a coronal system is formed over an active region. Thereafter the center of gravity of the system gradually drifts poleward with the trailing unipolar magnetic region (UMR), and it becomes a high latitude coronal helmet, arched over a polar crown filament.By comparison of these coronal helmets with observations of the outer corona (to circa 4 R ) made at solar eclipse, lunar sunset, and with balloon and rocket-borne externally occulted corona-graphs, it appears that ground-based K-coronameter measurements to a distance of 1.5–2.0 R are sufficient to detect the coronal streamers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
Lunar rock magnetism   总被引:2,自引:0,他引:2  
The relationship between the magnetization and temperature in a high constant magnetic field for a temperature range between 5 K and 1100 K was examined for Apollo 11, 12 and 14 lunar materials. The average value of Curie point temperature is (768.2 ± 3.5)°C for the lunar igneous rocks and (762.5 ± 3.4)°C for the lunar fines and breccias. A tentative conclusion about the ferromagnetic substance in the lunar materials would be that Fe is absolutely dominant with a slight association of Ni and Co, and probably Si also, in the lunar native irons.The antiferromagnetic phase of ilmenite and the paramagnetic phase of pyroxenes are considerably abundant in all lunar materials. However, a discrepancy of observed magnetization from a simulated value based on known magnetic elements for the temperature range between 10 and 40 K suggests that pyroxene phase represented by (M x Fe1-x ) SiO3 (whereM = Ca2+, Mg2+, etc and 0 x 1/4) also may behave antiferromagnetically.Magnetic hysteresis curves are obtained at 5 K and 300 K, and the viscous magnetic properties also are examined for a number of lunar materials. The superparamagnetically viscous magnetization has been experimentally proven as due to fine grains of metallic iron less than 200 Å in mean diameter. The viscous magnetization is dominant in the lunar fines and breccias which is classified into Type II, while it is much smaller than the stable magnetic component in lunar igneous rocks (Type I). The superparamagnetically fine particles of metallic iron are mostly blocked at 5 K in temperature; thus coercive force (H c ) and saturation remanent magnetization (I R ) become much large at 5 K as compared with the corresponding values at 300 K.Strongly impact-metamorphosed parts of lunar breccias have an extremely stable NRM which could be attributed to TRM. NRM of the lunar igneous rocks and majority of breccias (or clastic rocks) are intermediately stable, but their stability is considerably higher than that of IRM of the same intensity. This result may imply that some mechanism which causes an appreciable magnitude of NRM and the higher stability, such as the shock effect, may take place on the lunar surface in addition to TRM mechanism for special cases.A particular igneous rock (Sample 14053) is found to have an unusually strong magnetism owing to a high content of metallic iron (about 1 weight percent), and its NRM amounts to 2 × 10–3 emu/g. The abundance of such highly magnetic rocks is not known as yet but it seems that the observed magnetic anomalies on the lunar surface could be related to such highly magnetized rock masses.  相似文献   

17.
The Mauritius Radiotelescope (MRT) is a T-shaped array of helical antennas with a 2048 m EW arm and a 890 m South arm. The primary objective of the telescope is to produce a sky survey in the declination zone -15° to -65° with a point source sensitivity of 200 mJy and an angular resolution of 4'×4.6'cosec(z) at 151.6 MHz, z being the zenith angle . This paper describes the telescope and the present status  相似文献   

18.
Heat convection, being a more general theory than conduction theory, compels one to give reasons for using the latter theory as the basis of thermal evolution studies. Such reasons are supplied by considerations of material rheology.The specific case of the thermal regime of the Moon is first considered as a steady state problem. It is demonstrated that no plausible creep resistance of lunar material and heat generation is compatible with a purely conductive theory of lunar thermal evolution. The most plausible, steady state models give convective cores extending to within 200–300 km of the surface. The radial temperature gradients in such cores is virtually confined to a thermal boundary layer but averages to about a tenth of degree/km. The (steady) central temperature for the most plausible lunar rheologies lie between 600–1000°C. Such models are compatible with the first interpretations of lunar magnetometry. The case for considering the lunar thermal state as such a quasi-static state is discussed.It is also predicted that in very local zones the viscous dissipation of the general circulation produces much higher temperatures. Chemical differentiation and seismicity would have their origin in such low viscosity zones.  相似文献   

19.
The Monoceros ring, a circular optical nebulosity 3°.5 in diameter and centred at R.A.=6h37m, Dec.=6°30 (l ii =205°.5,b ii =0°.2) is in good structural agreement with radio observations. A neutral hydrogen shell is also accurately projected on the ring. These observations are consistent with the Monoceros ring being a supernova remnant 90–100 pc in diameter expanding at about 45 km s–1 and having an age of the order of a million years. Bright Hii regions containing early-type stars (e.g., galactic cluster NGC 2244 in the Rosette nebula) and extremely young stars of the OB association Mon OB2 lie at the edges of the ring. The positional and temporal coincidence of the Mon OB2 association with a supernova remnant suggests that probably the star formation in this region is induced or speeded up by the passage of a supernova shock wave through the clumpy interstellar medium.  相似文献   

20.
The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the Sun, can explain the differences in composition of the terrestrial planets and the Moon. An important factor is the variation of pressure and temperature with distance from the Sun, and in the case of the Moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the Sun joins the Main Sequence.Many of the properties of the Moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles can be understood if the Moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel, perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 AE and with presently high deep internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800°C. The lunar crust is 80% gabbroic anorthosite, 20% basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g cm–3.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.Contribution No. 2260, Division of Geological and Planetary Sciences California Institute of Technology, Pasadena, Calif. 91109, U.S.A. Presented at theIAU Symp. Cosmochem., Cambridge, Mass. August 14-16, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号