首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness.  相似文献   

2.
3.
Experimental data for buoyant plumes released from high sources into layers having little ambient turbulence show that plume dispersion parameters vary in a manner similar to that during initial plume rise. This is consistent with general plume rise theory. Dispersion of plumes from tall stacks in a shoreline environment where a thermal internal boundary layer is formed often demonstrates this behaviour.  相似文献   

4.
The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Re τ  = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0°, 30°, 45°). The results agree well with available experimental data measured in a water channel for a flow angle of 0°. Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays.  相似文献   

5.
The SF6 gas tracer observations for puffs released near the ground during the Joint Urban 2003 (JU2003) urban dispersion experiment in Oklahoma City have been analysed. The JU2003 observations, at distances of about 100–1,100 m from the source, show that, at small times, when the puff is still within the built-up downtown domain, the standard deviation of the concentration time series, σt, is influenced by the initial puff spread due to buildings near the source and by hold-up in the wakes of large buildings at the sampler locations. This effect is parameterised by assuming an initial σto of about 42 s, leading to a comprehensive similarity formula: σt = 42 + 0.1t. The second term, 0.1t, is consistent with an earlier similarity relation, σt = 0.1t, derived from puff observations in many experiments over rural terrain. The along-wind dispersion coefficient, σx, is assumed to equal σt u, in which u is the puff speed calculated as the distance from the source to the sampler, x, divided by the time after the release that the maximum concentration is observed at the sampler. σx can be expressed as σx = σxo + 0.14x, with the initial σxo of 45 m. This initial σxo agrees with the suggestion of an initial plume spread of about 40 m, made by McElroy and Pooler from analysis of the 1960s’ St. Louis urban dispersion experiment. The puff speeds, u, are initially only about 20% of the observed wind speed, averaged over about 80 street-level and rooftop anemometers in the city, but approach the mean observed wind speed as the puffs grow vertically. The scatter in the σt data is about ± a factor of two or three at any given travel time. The maximum σt is about 250 s, and the maximum duration of the puff over the sampler, Dt, sometimes called the retention time, is about 1,100 s or 18 min for these puffs and distances.  相似文献   

6.
We report on measurements of the near-field dispersion of contaminant plumes in a large array of building-like obstacles at three scales; namely, at full-scale in a field experiment, at 1:50 scale in a wind-tunnel simulation, and at 1:205 scale in a water-channel simulation. Plume concentration statistics extracted from the physical modelling in the wind-tunnel and water-channel simulations are compared to those obtained from a field experiment. The modification of the detailed structure of the plume as it interacts with the obstacles is investigated. To this purpose, measurements of the evolution of the mean concentration, concentration fluctuation intensity, concentration probability density function, and integral time scale of concentration fluctuations in the array plume obtained from the field experiment and the scaled wind-tunnel and water-channel experiments are reported and compared, as well as measurements of upwind and within-array velocity spectra. Generally, the wind-tunnel and water-channel results on the modification of the detailed plume structure by the obstacles were qualitatively similar to those observed in the field experiments. However, with the appropriate scaling, the water-channel simulations were able to reproduce quantitatively the results of the full-scale field experiments better than the wind-tunnel simulations.  相似文献   

7.
Fluctuating plume models provide a useful conceptual paradigm in the understanding of plume dispersion in a turbulent flow. In particular, these models have enabled analytical predictions of higher-order concentration moments, and the form of the one-point concentration probability density function (PDF). In this paper, we extend the traditional formalism of these models, grounded in the theory of homogeneous and isotropic turbulent flow, to two cases: namely, a simple sheared boundary layer and a large array of regular obstacles. Some very high-resolution measurements of plume dispersion in a water channel, obtained using laser-induced fluorescence (LIF) line-scan techniques are utilised. These data enable us to extract time series of plume centroid position (plume meander) and dispersion in the relative frame of reference in unprecedented detail. Consequently, experimentally extracted PDFs are able to be directly compared with various theoretical forms proposed in the literature. This includes the PDF of plume centroid motion, the PDF of concentration in the relative frame, and a variety of concentration moments in the absolute and relative frames of reference. The analysis confirms the accuracy of some previously proposed functional forms of model components used in fluctuating plume models, as well as suggesting some new forms necessary to deal with the complex boundary conditions in the spatial domain.  相似文献   

8.
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.  相似文献   

9.
Large-eddy simulations (LES) and Reynolds-averaged Navier–Stokes (RANS) computations of pollutant dispersion are reported for the Mock Urban Setting Test (MUST) field experiment flow. In particular we address the effects of incident wind angle deviation on the mean velocity and on the mean concentration fields. Both computational fluid dynamical methods are assessed by comparing the simulation results with experimental field data. The comparative analysis proposes to relate the plume deflection with the flow channelling effects. The results show that the plume deflection angle varies with the altitude. As the ground is approached the plume is shown to be almost aligned with the street canyon direction and independent of the incident wind directions considered. At higher altitudes well above the obstacles, the plume direction is aligned with the mean wind direction as in dispersion over flat terrain. The near-ground plume deflection is the consequence of a strong channelling effect in the region near the ground. The mean concentration profiles predicted by LES and RANS are both in good qualitative agreement with experimental data but exhibit discrepancies that can be partly explained by the influence of small incident wind angle deviation effects. Compared to RANS, LES predicts a higher channelling and thus a higher deflection of the plume. Results on the fluctuating intensity of the concentration obtained from LES show a satisfactory agreement with experiments. This information is not available from RANS for which only the mean concentration modelling is considered.  相似文献   

10.
The influence of surface roughness on the dispersion of a passive scalar in a rough wall turbulent boundary layer has been studied using wind-tunnel experiments. The surface roughness was varied using different sizes of roughness elements, and different spacings between the elements. Vertical profiles of average concentration were measured at different distances downwind of the source, and the vertical spread of the plume was computed by fitting a double Gaussian profile to the data. An estimate of the integral length scale is derived from the turbulence characteristics of the boundary layer and is then used to scale the measured values of plume spread. This scaling reduces the variability in the data, confirming the validity of the model for the Lagrangian integral time scale, but does not remove it entirely. The scaled plume spreading shows significant differences from predictions of theoretical models both in the near and in the far field. In the region immediately downwind of the source this is due to the influence of the wake of the injector for which we have developed a simple model. In the far field we explain that the differences are mainly due to the absence of large-scale motions. Finally, further downwind of the source the scaled values of plume spread fall into two distinct groups. It is suggested that the difference between the two groups may be related to the lack of dynamical similarity between the boundary-layer flows for varying surface roughness or to biased estimates of the plume spread.  相似文献   

11.
A study of turbulent dispersion of passive tracers in unstable boundary layers, conducted in the Meteorological Wind Tunnel of the Fluid Dynamics and Diffusion Laboratory at Colorado State University, is described. The measured mean and turbulent velocities are found to be similar to those measured in atmospheric convective boundary layers. The diffusion pattern, from ground-level and elevated sources over both a smooth floor and a rough floor, is found to be the same as that measured in the water-tank experiments of Deardorff and Willis (1975) and in numerical models. The measurements show an initial rapid descent of plumes from elevated sources and a subsequent plume rise at t* > 0.5 h/w*. Ground-level concentrations from elevated sources are found to be larger, at certain distances from the source, than those from a ground-level source of equal strength. The measurements of the cross-wind spread v are in agreement with the Prairie Grass measurements and confirm earlier predictions that the initial cross-wind spread for ground-level sources is larger than that for elevated sources.  相似文献   

12.
Water-tunnel measurements of velocity, turbulence and scalar concentration for three model urban canopies with aspect ratios A r of building height-to-width of 0.25, 1 and 3 are presented. The measurements for the canopies with A r = 1 and 3 are new, while the measurements for A r = 0.25 were previously published. A passive scalar was continuously released from a near-ground point source, and the concentration was measured at several distances from the source and at different heights above the ground. Plume spreads, concentration and distance from the source were non-dimensionalized using length, time and velocity scales reflecting the geometry of the buildings. The scaling collapses the data for all aspect ratios and is valid when the vertical extent of the plume is smaller than the canopy height. The observed plume spreads are compared with analytical relations, which predict linear growth in both transverse and vertical directions. The observed mean concentration is compared with a Gaussian dispersion model that predicts a ?2 power-law decay with distance from the source.  相似文献   

13.
In order to estimate the impacts of buildings on air pollution dispersion, numerical simulations are performed over an idealized urban area, modelled as regular rows of large rectangular obstacles. The simulations are evaluated with the results of the Mock Urban Setting Test (MUST), which is a near full-scale experiment conducted in Utah’s West Desert area: it consists of releases of a neutral gas in a field of regularly spaced shipping containers. The numerical simulations are performed with the model Mercure_Saturne, which is a three-dimensional computational fluid dynamics code adapted to atmospheric flow and dispersion simulations. It resolves complex geometries and uses, in this study, a k closure for the turbulence model. Sensitivity studies focus on how to prescribe the inflow conditions for turbulent kinetic energy. Furthermore, different sets of coefficients available in the literature for the k closure model are tested. Twenty MUST trials with different meteorological conditions are simulated and detailed analyses are performed for both the dynamical variables and average concentration. Our results show overall good agreement according to statistical comparison parameters, with a fraction of predictions for average concentration within a factor of two of observations of 67.1%. The set of simulations offers several inflow wind directions and allows us to emphasize the impact of elongated buildings, which create a deflection of the plume centerline relative to the upstream wind direction.  相似文献   

14.
The mean concentration distributionwithin a plume released from a point source in the atmosphericboundary layer can be greatly influenced by the systematic turningof wind with height (i.e. vertical wind direction shear). Such aninfluence includes a deflection of the plume centroid, with anassociated shearing of the vertical plume cross-section, and anenhancement of dispersion, in the horizontal plane. Wind directionshear is normally not accounted for in coastal fumigation models,although dispersion observations with shear acting as acontrolling parameter are not uncommon. A three-dimensionalLagrangian stochastic model is used to investigate the influenceof uniform wind direction shear on the diffusion of a point-sourceplume within the horizontally homogeneous convective boundarylayer, with the source located at the top of the boundary layer.Parameterisations are developed for the plume deflection andenhanced dispersion due to shear within the framework of aprobability density function (PDF) approach, and compared with theLagrangian model results. These parameterisations are thenincorporated into two applied coastal fumigation models: a PDFmodel, and a commonly used model that assumes uniform andinstantaneous mixing in the vertical direction. The PDF modelrepresents the vertical mixing process more realistically. A moreefficient version of the PDF model, which assumes a well-mixedconcentration distribution in the vertical at large times, isapplied to simulate sulfur dioxide data from the Kwinana CoastalFumigation Study. A comparison between the model results and thedata show that the model performs much better when the wind-sheareffects are included.  相似文献   

15.
The ability to simulate atmospheric dispersion with models developed for applied use under stable atmospheric stability conditions is discussed. The paper is based on model simulations of three experimental data sets reported in the literature. The Hanford data set covered weakly stable conditions, the Prairie Grass experiments covered both weakly stable and very stable atmospheric conditions, and the Lillestrøm experiment was carried out during very stable conditions. Simulations of these experiments reported in the literature for eight different models are discussed. Applied models based on the Gaussian plume model concept with the spread parameters described in terms of the Pasquill stability classification or Monin–Obukhov similarity relationships are used. Other model types are Lagrangian particle models which also are parameterized in terms of Monin–Obukhov similarity relationships. The applied models describe adequately the dispersion process in a weakly stable atmosphere, but fail during very stable atmospheric conditions. This suggests that Monin–Obukhov similarity theory is an adequate tool for the parameterization of the input parameters to atmospheric dispersion models during weakly stable conditions, but that more detailed parameterisations including other physical processes than those covered by the Monin–Obukhov theory should be developed for the very stable atmosphere.  相似文献   

16.
Direct numerical simulation is used to investigate the interference arising from the dispersion of passive scalar plumes released from a pair of point sources in a fully-developed wall-bounded shear flow. Four different lateral separations of the two sources for both near ground-level and elevated releases are considered. The downwind evolution of the correlation between the plume concentrations along the centreline between the two sources and the behaviour of the lateral profiles of the correlation at various locations downwind of the two sources are examined in detail. Differences in the exceedance probability over a high concentration level for a single plume and the total plume are highlighted and studied, and the effects of destructive and constructive interferences on the exceedance probabilities for the total plume are used to explain these differences. One significant result is that all higher-order (third-order and above) moments of the total concentration can be inferred from the application of a clipped-gamma distribution using the information embodied in only the first- and second-order concentration moments of each single plume, and in the cross-correlation coefficient of the instantaneous concentration of the two plumes.  相似文献   

17.
Wave-Modified Flux and Plume Dispersion in the Stable Boundary Layer   总被引:2,自引:1,他引:1  
The effects of a pressure jump and a following internal gravity wave on turbulence and plume diffusion in the stable planetary boundary layer are examined. The pressure jump was accompanied by a sudden increase in turbulence and plume dispersion. The effects of wave perturbations on turbulence statistics are analysed by calculating fluxes and variances with and without the wave signal for averaging times ranging from 1 to 30 min. The wave signals are obtained using a band-pass filter. It is shown that second-order turbulence quantities calculated without first subtracting the wave perturbations from the time are greater than those calculated when the wave signal is separated from the turbulence. Estimates of the vertical dispersion of an elevated tracer plume in the stable boundary layer are made using an elastic backscatter lidar. Plume dispersion observed 25 m downwind of the source increases rapidly with the arrival of the flow disturbances. Measured plume dispersion and plume centreline height correlate with the standard deviation of the vertical velocity but not with the wave signal.  相似文献   

18.
Summary This paper describes progress made in the scale modeling of urban climate. The studies reviewed are mainly indoor and outdoor experiments that use an array of urban-like flow obstacles or roughness elements such as cubes, blocks, and cylinders. Except for several important and unique studies, the many experiments that use a single obstacle, or those that use an array of elements to create a vegetation-like roughness are excluded from this review. Topics considered include turbulent flow, scalar dispersion, local transfer coefficient, radiative transfer, and the surface energy balance. More than 40 relevant studies are cited, and both significant developments and remaining problems are described. The future application of scale models to obtain a comprehensive understanding of urban climate is also examined, with the focus mainly upon the possibility of outdoor experiments.  相似文献   

19.
Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.  相似文献   

20.
We present a numerical study aimed at quantifying the effects of concentration-dependent density on the spread of a seeping plume of CO2 into the atmosphere such as could arise from a leaking geologic carbon sequestration site. Results of numerical models can be used to supplement field monitoring estimates of CO2 seepage flux by modelling transport and dispersion between the source emission and concentration-measurement points. We focus on modelling CO2 seepage dispersion over relatively short distances where density effects are likely to be important. We model dense gas dispersion using the steady-state Reynolds-averaged Navier-Stokes equations with density dependence in the gravity term. Results for a two-dimensional system show that a density dependence emerges at higher fluxes than prior estimates. A universal scaling relation is derived that allows estimation of the flux from concentrations measured downwind and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号